
Morphogenesis of Spatial Configurations
MSc in Architecture, Computing & Design 2007/2009

Tutors:

Paul S. Coates
Christian Derix
Tim Ireland
Manos Zaroukas

Software engineer:

James Galasyn

Gennaro Senatore

 2

Acknowledgments

It has been an intense and challenging learning experience which broadened my
mind widely and overturned the way I conceived design. My thanks go to Paul S.
Coates, to whom this work owes its intellectual debts. His “open-source” charac-
ter and his tireless willingness to keep a colourful debate with his students, en-
couraged me to undertake this adventurous endeavour. To Christian Derix, whose
teaching and help were fundamental to engage with the world of design - com-
puting. To my tutors, colleagues, and friends Emmanouil Zaroukas and Tim Ire-
land, who personally assisted me and whose tutoring and contribution have been
essential for the development of this work. To James Galaysn, without whom I
would have never be able to conduct this experimental research. He provided me
with a robust framework to work with and his patient advices made me able to
extend it to fulfil my aims.

 3

Abstract

The thesis discusses the possibility to build a design methodology based on the
utilization of generative rule systems, evolutionary techniques and performance
evaluation tools. This is conducted through the implementation of a computation-
al system in which spatial configurations can be defined by a set of instructions
framed in hierarchical data structures. These are graphically interpreted to create
their geometrical expression which is evaluated according to design criteria such
as structural stability and accessibility of its basic components. String rewriting
Lindenmayer systems and Genetic Programming are combined to first create the
definition of the problem and afterwards evolve possible answers to it. The aim is
to integrate the generation of forms and the evaluation of their performances in
order to design spatial configurations whose morphology emerges out of a proc-
ess of formation rather than imposed by a fixed and predetermined representa-
tion. The adaptation of such rules system under the pressure of encoded design
criteria resolves in the emergence of forms which become, hence, the expression
of high level of abstractions.

 4

Index

• Introduction

Chapter 1

• Aim and scope

On Evolutionary Design

 • The general scheme
 • Genetic Algorithm, a brief description
 • Introduction to Genetic Programming

Optimization, exploration and creativity

 • Computational Embryogenesis | three types
 • Creative Evolutionary Systems

Chapter 2

The Structure of the System

 • Precedents
 • Coevoutionary approach to architecture
 • String rewriting technique : L-Systems
 • L-Systems and Genetic Programming: Generative Engine
 • Hierarchical structures
 • The Load Propagation Model
 • Morphogenesis under load
 • Selection : an elitist approach
 • Genetic operators : Crossover and mutations
 • The software workflow

Chapter 3

The System at work | Experimental results

 • The emergence of symmetry, bridges and helices
 • Stable High Structures
 • Structural Coevolution
 • Conclusions
 • References

4

6 - 7

8 - 9
10
11

12 - 13
14 - 15

16 - 17
17 - 18
19
20 - 22
23
24 - 25
26
27
28
29 - 30

31 - 32
33 - 39
40 - 42
43
44

 5

Intro

Since “Haring’s functionalist philosophy” (Steadman 2008, p.238) and Sullivan’s
dictum “form follows function” (Sullivan 1896), formulated at the beginning of last
century, many architects and engineers have used design methodologies seeking
to generate form as an emergent property of what being designed, rather than
imposing a priori its external appearance. Although these concepts were partially
misinterpreted by modernist movements, leading to an architecture based on
“spatially programmatic requirements” (Dollens 2006), they constitute the founda-
tion of what has recently been defined as “organic architecture” (Steadman 2008).
Starting from Sullivan’s organic manipulations (Sullivan 1967), passing from Gaudi
and Frei Otto’s form finding, Alvaro Alto’s biodynamism, Eisemann’s destructivist
exercises, Stiny’s shape grammar, Hillier’s syntax of space, Lynn’s calculus based
parametric tools, form started following forces rather than just functions. Forces
are to be intended in the broadest meaning of the word, being the physical, so-
cial and economical environment modelled as a series of force fields. The force
field can be abstracted and considered as the result of the interaction between
the object being designed and its environment in a process of morphogenesis.
Connectivity, materiality, the embodiment of parts-to-whole relationships and the
structuring of their hierarchy, are at the base of the design methodology.
The advent of complexity theory and the availability of computational resources,
has lead to the simulation of processes of formation based on evolutionary tech-
niques, reaction diffusion mechanisms and developmental growth models . Form
here comes out of a gestalt process that is much closer to biological development
of an organism, where algorithms are able to “grow” and evolve design concepts
(Steadman 2008).
Even beyond this, architects such as John Johansen envisages an architecture
where the advances in nano-molecular engineering will allow for structures that
literally build themselves, being self organising and completely responsive to their
environment (Johansen 2003).
It is upon this theoretical background, the work of Paul Coates & coworkers at
CECA (Coates et al. 1999), James Galasyn (Galasyn 2008) and Peter Bentley (Bent-
ley 1999), that the thesis presented here builds its foundation. Coates & cowork-
ers first pioneered and built the basis of the conceptual armour this work moved
from. The vivid debate with prof. Coates at the Center for Evolutionary Computing
in Architecture CECA (University of East London) generated my interest for the
field of generative modelling whereby truly form-finding processes can be experi-
mented.
Software engineer James Galasyn has been developing an experimental software
platform for generative modelling which is based on concepts first experimented
at CECA. His consultancy and advices gave me the capacity to extend his system to
start this adventurous endeavour in the field of evolutionary design.
The conversation with computer scientist Peter Bentley and the reading of his
work (Bentley 1999, Bentley 2002, Kumar and Bentley 2003) has broadened my
understanding of generative design. It shed light on the limitations that belongs to

the system that I’ve been developing and showed possible future ways to follow.
Evolutionary Design can be framed within the larger context of the field of Artifi-
cial Life. Artificial Life is not a unitary field of research, it takes contribution from
Computer Sciences, Biology, Philosophy, Physics, Mathematics and Cognitive Sci-
ences. At the very heart of this field is the attempt to synthesizes artificial systems
with lifelike behaviour. The approach is mainly based on abstracting the logical
principal of living organisms and the implementation of these “through synthesis
on another medium”(Heudin 1995). Being the field of Biology the main source of
inspiration, Evolutionary Design borrows from it, along with the Darwinian theory
of evolution, also its terminology. For this reason, the value of a variable for a
problem becomes a “gene”, while all the admissible values that the variable can
take are the “alleles”. The way in which all the variables concerning a problem are
connected is , hence, the “genome”.
The thesis discusses the possibility to build a design methodology based on the
utilization of growth models, evolutionary techniques and performance based
evaluation tools. A model that simulates the growth of an object can be thought
of as a sequence of instructions that have to be executed to create it, starting from
its basic components. The evolutionary process will explore the dominium of pos-
sible ways in which the components of the system can relate to each other. Per-
formance based evaluation tools will simulate the presence of force fields acting
on configurations under development, hence, triggering digital morphogenesis. In
this way the system is made capable to develop its own structure, establishing the
relations between its components.
I will start by giving a small introduction to Genetic Programming and to evolution-
ary techniques, speculating on the possibility for these systems to act in a creative
manner during the exploration amongst possible design proposals.
I will then describe L-Systems, being the growth model adopted, and its combina-
tion with Genetic Programming. They cooperate towards the building of a system
that does not require the description of any afore hand geometrical entity but
rather the specification of the topology of what being designed.
It follows the description of a load propagation model (Galasyn 2008) that is able
to assess the structural behaviour of the generated configurations, which are ex-
posed to the action of a physical force field such as the gravity. In this way the
system can rely on the evaluation of intensive quantities to navigate through the
solution domain.
Finally, by reporting some of the experimental results obtained so far, I will high-
light the capacity as well as the limitations of the system.

 6

Chapter 1 | Aim and Scope

This work explores the utilization of Artificial Life techniques and performance
evaluation tools within the architectural design process. It seeks to integrate the
generation of forms and the evaluation of their performances in order to design
spatial configurations, whose morphology is emergent rather than superimposed.
It aims at defining “geometry” through “topology” where geometry means the set
of features that describe the appearance of the artefact and topology is the set of
relations between its components. Starting with an ill-defined or even absent defi-
nition of the form, the relations between its constituents are instead embedded
in the system. These can be thought of as generative rules, whose variation can
be put under pressure by means of evolutionary techniques, in order to explore a
domain of possible solutions to a problem.
The design process is considered to be objective oriented, where the objectives
are defined by performances that have to be evolved. The objective criteria main-
ly serves as feedback to understand the adaptation of an evolved configuration to
changes in its topology. “Generating forms and having a simultaneous feedback on
their behaviours, under real design constraints, can help to consider non conven-
tional configurations of space” (Khristina Shea, cited in Kolarevic 2003).
This constitutes the foundation for a design methodology that allows for an effi-
cient exploration of viable alternatives, while proposing solutions that are consist-
ent with design constraints.

Past research works

Over the last two years, I have been mainly working on Artificial Life and Physical
Form-Finding techniques aiming at building the base for a methodology whereby
their integration with performance-based simulation tools can be achieved.
Fig1, fig2 and fig3 show some of the outcomes generated by an algorithm that
I developed last year in May 2008. It mainly consists of a procedure to encode
the “body plan” of the objects being designed, and a classic steady state Genetic
Algorithm. The objects are generated out of key parameters, whose variation cre-
ates different geometric expression of their topology. By means of the Genetic
Algorithm it is possible to vary these parameters and test the generated configura-
tions against an environment. In this way the objects are evolved, generation over
generation of attempts, reaching better performances, which also reflects the ex-
pression of new forms. The “environment” can be thought of as a set of design
criteria that serves to evaluate what is generated in order to explore efficiently the
solution domain. The solution domain is the universe of all possible combination
of the “key parameters”.
We could say that the generated configurations, over generations of attempts, be-
come expression and virtual representation of the design criteria (Delanda 2002).
For detailed explanation of the procedure visit http://wiki.uelceca.net/msc0809/
published/GA+-+Solar+Gain and http://wiki.uelceca.net/msc0809/published/
GA+-+Multi+Objective. Fig 1 generation after generation

 7

Although fig1, fig2 and fig3 show objects whose topology differs greatly from each
other, they are generated by using the same mechanism, changing only the way
to encode their body plan. It is worth highlighting the main shortcomings of this
piece of work which constitute part of the theoretical impetus that has moved the
current research:

• using Genetic Algorithm and an external encoding of the topology, it is not pos-
sible to evolve the body plan. Once the body plan is encoded, the system will ex-
plore possible expressions of the same topology but will never be able to change
it, or to create a new one. This means that the user will never see something that
he/she could not expect.

• with regard to performance-evaluation tools, it must be said that time and re-
sources should be invested for the development of their light-weight or “low-reso-
lution” version, in order to be used at the conceptual level within the architectural
design process. A programmatic approach using vector algebra can be a substitute
to Finite Element Method as well as Smooth Particles Hydrodynamics an alterna-
tive to heavy Computational Fluid Dynamic simulations.

• the absence of any link with the material system. The embedding of a procedure
that simulates propagation of loads, will open the way for introducing the evalua-
tion of intensive quantities such as distribution of stresses or energy of deforma-
tion. These can be used as design criteria in order to explore the solution domain
while, at the same time, developing a meaningful structural system.

 weights

w1=4 V_over_FA
w2=4 V_over_F
w3=10 H_centroid
w4=4 curvature
w5=6 solar gain
w6=6 wind exp.
w6=8 FA_R generation 30thgeneration 1st

Fig 2 generation after generation

Fig 3 generation after generation

 8

On Evolutionary Design

Evolutionary Algorithms started being developed in the early 60s in Computer Sci-
ence. Those methods are all based and inspired by the analogy to natural evolu-
tion. Evolution is a good general purpose problem solver which means that it can
be applied to a wide variety of design problems without the need to develop ad
hoc specialised procedures (Bentley 1999). The main activity in Evolutionary Com-
putation is “searching”, having any general problem a search space or solution
domain of possible solutions to it. We can think to encode a problem in a set of
parameters whose values correspond to a solution, every legal set of parameters
correspond to a point in the search space. What an evolutionary system mainly
does is indeed to navigate this search space visiting different points, searching
for good solutions. “Evolution” is not explicitly encoded in these methods but it
just happens by using a simple mechanism. Working with population of individu-
als (possible solutions) rather than just one at time, these systems usually keep
the good ones and recombined their genotypic representation in order to pass
next generations their good “genes” . Keeping the analogy with biology, the word
“gene” here is used instead that parameter of the problem, its value could indeed
be called “allele”. This simple mechanism is sophisticated enough to ensure the
production of better performing individuals over generations. All Evolutionary Al-
gorithm require a steer to drive the evolution to desired places of the solution
domain. This is done by evaluating all the generated individuals and assigning
them a score, which is usually called “fitness”. It is, hence, possible to rank them
according to their fitness favouring the emergence of better solutions during the
evolutionary process. Due to the fact that population of individuals are evolved,
these methods perform a searching that is massively parallel (Holland 1992). Even
for a small set of parameters describing a problem, the combinatorial range can
reach significant proportions. The time that is required, if one wants to try all
possible combinations in a serial manner, would be too long, if not infinite, to be
feasible. A parallel search, instead, is able to cut off the required time to a reason-
able amount (Coates 2010).
The four main type of evolutionary algorithm are :

• evolutionary programming (EP), one of the first evolutionary algorithm created
by Lawrence Fogel in 1963
• evolution strategies (ES), created by Ingo Rechenberg in 1973
• genetic algorithm (GA), created by John Holland in the early 70s and further
developed by Goldberg
• genetic programming (GP), invented by John Koza in 1992, (subject of this work)

All EAs perform reproduction of the generated individuals either by cloning or
using recombination, which could be also followed by small random mutations.
In this way the new individuals can inherit the characteristics from their parents
whilst ensuring a certain degree of variation. They all perform “selection” to de-
termine which solution will have more probability to transmit next generations its

“genes”. Selection can be considered as the evolutionary pressure exerted by the
virtual environment in which the individuals are placed.
Generally speaking the structure of an EA can be divided in five main parts:

• initialization
• mapping
• evaluation
• selection
• reproduction
• termination

Initialization consists in seeding the initial population with random values. In this
way random solutions are generated which are ready to be evaluated. In some
cases instead than using random initial solutions, nonrandom initial “embryos”
can be used as a starting point. It is worth remembering that in the case of Genetic
Programming (subject of this work) the solutions/individuals do not have fixed
structure. This means that this technique allows not only for the evolution of the
values of the parameters but also of their number and the type of relations that
exist between them. This means that it allows the evolution of the structure itself
rather than just the details (Bentley 1999). The initialization in this case requires
the seeding of both the “structure” and the “values”.
Mapping is a process that comes in when there is a neat distinction between
the search space and the solution space. Mapping involves the decoding of the
instructions enclosed in the genotype to produce the phenotype. Not all the
EAs perform mapping because many of them do not make distinction between
genotype and phenotype. Recalling the biological analogy, mapping can be as-
sociated to “embryogeny”. Implementing “embryogeny” , although can be very
complicated, allows highly complex phenotypes to be expressed by very compact
genotypes. This reduces the dimension of the search space which increases the
efficiency of the EA.
When mapping, genotype can be thought of as a set of instructions that define
how the phenotype will be expressed. Further more, instead that defining directly
the instructions, it is possible to implement the way these instructions are gener-
ated.
Evaluation is the way to recognise which solutions are better than others, to drive
the evolution towards desired regions of the search space. Often the evaluation
of the individuals is performed by dedicated software analysis which can require
many hours for the examination of just one individual. How the results of the
evaluation analysis are used and elaborated to assign a score to the individuals, it
is specified by the fitness function. A fitness function can be single or multi-objec-
tive, static or dynamic. Often human interaction is used as fitness function itself
or as part of it. Evaluation and fitness function represent the virtual environment
which exerts certain forces on the individuals.
Selection is performed to preserve already known well performing solutions while
discovering others good ones. The preservation of good traits necessitates a

 9

method of selection that is able to discern to which extent information are good
or not. The most common strategies to specify parents selection are :

• tournament selection, this strategy combines random selection and perform-
ance based evaluation. First there is a tournament of individuals that are selected
randomly, amongst which the best performing is selected.

• fitness ranking, selection is not based on the actual distribution of fitness but
rather on fixed range of values that determine the classification of the individu-
als. If the fitness value, for a configuration, lies in between the limits of a rank, it
will be assigned the fixed score for that rank . This method ensures the tendency
towards better configurations but does not allow the discernment of small simi-
larities amongst the individuals in terms of fitness.

• roulette selection, this strategy provides a method of selection where the prob-
ability for an individual to be chosen is proportional to its fitness value. It gives a
high probability to fitter individuals but also leaves a certain possibility to the less
fit.

• elitism, in contrast to the previous strategy, elitism entails the copying of a cer-
tain number of best performing members into the new generation. In this way
good qualities will not be lost through mutation and cross over (breeding). These
members remain unaltered until better performing individuals have been found,
acting as a sort of source material.

Along with parents selection, pressure can be exerted by other methods such as
“fertility”, “replacement” and “death” (Bentley 1999).
Fertility is the number of offspring that parent can have. Selection can be based
also on this value rather than just on the fitness score. Most likely fitter individuals
will also have a higher degree of fertility.
Replacement can be performed by comparing the fitness values of new individuals
with the ones of older generations. If the offspring has a higher value, it will be
replaced in the population, taking the place of its parent.
Death involves the elimination of a solution due to the non satisfaction of certain
essential design criteria. It is also designed to prevent very fit individuals to persist
too long and corrupt the evolution causing fast convergence.
Reproduction is the action of manipulating the selected individuals in order to
create next generations. It is usually performed by recombining the genotypes of
couple of parents, and mutating to a certain degree the newly obtained offspring’s
genotypes. It can be also done by mutating a copy of the selected parent. A good
reproduction technique must be able to partially preserve useful traits of the par-
ents while ensuring a reasonable degree of variation.
Termination can be based on different kind of considerations. The system can
stop running because the satisfaction of a certain set of design criteria has been
achieved or due to the reaching of limits in computational resources.

Another reason can be a very small rate of improvement in the fitness value,
which means that convergence or undesired local optima has been reached.

Fig 4 the general scheme for Genetic Algorithm

 10

 run1 weights

w1=2 V_over_FA
w2=2 V_over_F
w3=10 H_centroid
w4=1 curvature
w5=2 solar gain
w6=10 wind exp.
w7=6 FA_R

 run2 weights

w1=3 V_over_FA
w2=5 V_over_F
w3=10 H_centroid
w4=5 curvature
w5=8 solar gain
w6=4 wind exp.
w7=6 FA_R

Genetic Algorithm, a brief description

Genetic Algorithm follows the structure outlined in the previous paragraph. There
is usually a clear distinction between search space and solution space so that at
each genotype correspond a phenotype. Genotype are initialised with random
alleles, phenotype are produced and evaluated. After that, the individuals are
ranked according to the type of selection technique and recombined to create
next generation. This repeats until termination criteria are met. Usually the alleles
of the genotype have the form of strings of binary numbers of a certain length,
which can be decoded in order to represent any sort of information. Fig 5 shows
how the cross over operation is performed between the genotype of two selected
solutions. This operation randomly allocates genes from parents to offsprings by
swapping selected parts of their genotypes. Fig 6 shows a series of generations
where the configuration to be evolved is a circular surface who can represent a n
abstract reprxesentation of a high rise building. In this case the alleles of the geno-
type are the coordinates of points that are used to describe those surfaces. The
environment for these individuals is a series of fitness functions which test them
against different design criteria. For instance, one of these criteria is the maximiza-
tion of absorbed solar radiation during the winter or the minimization of exposure
to wind in the peak period of the year. The last two generations in fig 6 show the
coloured map of absorbed solar radiation and pressure caused by the wind, pro-
jected on the external surface of the individuals. There can be many other design
criteria to be introduced, and many are the techniques available to combine them.
Sophisticated procedures involve the use of Pareto Optimality. One of the simplest
is to scale each value, using the size of the correspondent solution domain, in
order for them to be expressed in terms of percentage. A set of “weights” is then
introduced in order to have the possibility to bias the evolution to fit different
scenario. When having more than one design criteria, Genetic Algorithms take the
name of Multi Objective.

Fig 7 different outcomes by varying the inflluence (weights) of the design criteria

Fig 6 solar gain and wind exposure

Fig 5 cross over

parents

offsprings

 700 pa
 500 pa
 300 pa
 100 pa
-100 pa
-300 pa
-500 pa
-700 pa

0 degree
 RGB
(255,0,0)

90 degree
 RGB
(0,0,255)

 11

Introduction to Genetic Programming

Genetic Programming can be considered as a generalization of Genetic Algorithm.
The main difference is that the genotype of the individuals are represented as a
tree data structure which replaces the sequential string of binary numbers used
in Genetic Algorithm. The data structure mainly contains the rules that define the
developmental process of the configurations. In this way there is not direct encod-
ing of the body plan and the system can develop autonomously its own hierarchy.
When cross over is performed for two selected individuals, one of the node is
swapped with another node from another individual,hence, replacing an entire
branch. Fig 1 shows the expression for a balanced tree data structure. This tree
has a depth equals to 3 which indicates the number of times (in this case only two
siblings for each branch but there can be more) it branches out. A node can be
either an “operand” or an “operator”. An operand is the argument for the function
performed by the operator. At the very end of the tree there can be only operands
(also called terminals), which in this case are just numbers. The nodes that lie on
the lower level branches, can be instead both operands and operators. Respecting
the hierarchy of the tree, one can unfold from its “leaves” to its root expressing
the phenotype that is encoded in it. In this particular case, the operands are just
math functions such as addition or subtraction which take two arguments each.
Shifting from numbers to geometrical entities and from math function to proce-
dures that perform action on the terminals, it is possible to build a system that
creates spatial configurations.
One of main limit of GA was the fixed size length to which the genotype was con-
strained to be. This entails the impossibility for the mapping procedure (the de-
velopmental process), which is the set of rules that operate on the genome for
producing the phenotype, to evolve. The hierarchical and variable structure of
genotype in Genetic Programming, naturally leads to the emergence of new (from
the initial random set of solutions) organised structures which can increase their
complexity over generations.
However, it must be said that different techniques have been developed to allow
variable-length chromosomes also in Genetic Algorithm (Bentley 1999).
As for GAs, the representation of the environment is again the key factor. In con-
trast to GA, the solution domain is not only constituted by the variables that are
encoded in the genome but also by the domain of possible functions (operand)
that can operate on the variables.

Fig 8 representation of the genotype as a tree data structure

1 2

3 4

5 6

7 8

 12

Optimization, exploration and creativity

Computational Embryogenesis | three types

The development of an animal or a plant from zygote to its birth and, consequent-
ly, the emergence of its form, are mainly due to the generation of ordered spatial
patterns of cell activities (Bard 1990 cited in Kumar and Bentley). Cells become
specialised for a particular activity through process of cellular differentiation, the
formation of patterns of cell activities causing morphogenesis. “The way in time
and space these processes occur is called embryogeny” (Kumar and Bentley). Evo-
lutionary computation has developed forms of embryogeny which borrow the key
concepts from embryology.
Mapping is the procedure whereby the genotype is decoded into the phenotype.
There can be no mapping at all, which is the case when the alleles of the genotype
are directly transformed in values for the phenotype (there is not distinction be-
tween the search space and the solution space) or very sophisticated techniques
can mimic biological “embryogeny”. Genotype and phenotype should effectively
enumerate the search space and the solution space, in order to identify coherent
regions in the solution domain. As a rule of thumb, small changes in the search
space should produce small changes in the solution space (Bentley 1999). In other
words offspring should resemble their parents for the evolution to rely on inherit-
ance. If the genetic operators cause too disruption and the search space is too
discontinuous, evolution deteriorate into random searching.
Advanced form of mappings, also called “embryogenesis”, are able to grow com-
plex phenotypes starting from simple genotypes. Advanced forms of embryog-
enies use also recursion, in order to promote the emergence of features such
as symmetry, segmentation, and adaptation. Embryogenesis can be classified in
three main types:

• external
• explicit
• implicit

External embryogenesis happen when evolutionary systems use fixed and non-
evolvable mapping procedures to decode the genes into the parameters of the
solution space. This is mostly the case of evolutionary optimization systems. Fig 9
shows an example of this type of mapping. Genes are decoded in numerical values
that represent the coordinates of points in 3D space. These points are used to
make sections which are successively lofted to make a cylindrical surface.
This type of mapping will remain static and unchanged over generations, not al-
lowing new topologies to emerge.
Explicit embryogenesis is constituted by a series of instructions which are organ-
ised as a data structure. These instructions are interlinked and organised accord-
ing to a certain hierarchy. Phenotypes are grown by following these instructions,
which can contain any sort of data, recursive procedures, conditional statements

Fig 9 external, non-evolved embryogeny

Fig 10 explicit, evolved embryogeny

dosubtract

dounion

dounion

copyback copyright

dounion

box 0

box 2

box 3 box 1

box 4

box 3 box 1

 13

and Bentley). This system is very promising because different from external em-
bryogenesis, where parallel processing, conditional iteration, subroutines must be
introduced manually and predetermined, it inherently incorporates them. Using
implicit embryogeny, the emergence of solutions of increasing complexity does
not necessarily require an equivalent increase of complexity in the genotype (Ku-
mar and Bentley). Further more, with this approach, both the phenotype and the
mapping process are dependent on the genotype, which depends itself on the
phenotype (fig 11). In so doing, the mapping process can evolve adaptively during
the development of the phenotype. With explicit embryogenies the genotype is
no longer dependent on the state of the phenotype, which is the reason why the
mapping process evolves without being adaptive during the development of the
phenotype.
To summarise, external embryogeny results in a not evolvable mapping while ex-
plicit embryogeny allows the mapping process to evolve. The mapping process in
implicit embryogenesis is, instead, evolvable and adaptive during the develop-
ment of the phenotype. On the other hand, achieving evolvability with implicit
mapping is even more difficult than for explicit embryogeny probably due to the
discontinuity it causes in the search space (Kumar and Bentley). Recent experi-
ments have shown that “despite having this desirable many-to-one genotype-to
phenotype relationship, the system still does not perform as well as desired. This
implies that a many to-one genotype-to-phenotype mapping, on its own, is not
enough to ensure evolvability” (Kumar and Bentley).

and even entire subroutines. Explicit embryogeny is usually performed using Ge-
netic Programming as generative engine because of the inherent tree data struc-
ture nature of the genotypic representation. Being the structure of the genotype
under evolution, embryogeny develops autonomously, without the need to be
designed by hand. This allows the emergence of adaptive mapping from genotype
to phenotype as a series of interlinked instructions which has a certain hierarchy.
Fig 11 shows an example of tree data structure genotype used in one of the ex-
periment carried out by Coates (Coates 2010). Each node can be an instruction
such as “boolean add” or “boolean subtract” which takes some arguments, in
this case 3D geometrical entities like boxes. Starting from the leaves of the tree,
the command are executed respecting the hierarchy of the data structure. In this
way it is possible to map the genotype to obtain 3D spatial configurations such
as the one shown in fig 11, right side. Evaluating and recombining these type of
structure gives, over generations, the possibility to evolve different topologies of
spatial configurations.
Although this type of mapping allows the emergence of an evolved hierarchy in
the genotype of the individuals, complex procedures such as recursion or itera-
tions need to be defined explicitly (Bentley 1999). This means that with explicit
embryogeny and Genetic Programming, it is possible to evolve the connections
between the instructions but no instruction can emerge autonomously. A set of
functions (the instructions) and terminals (the arguments of the functions) is de-
fined a priori. Through evolution, a hierarchical structure that builds upon these
instructions will emerge. By changing the relations between its constituents and
even changing the dimensionality of the solution domain, this type of evolution-
ary system explores multiple topologies in parallel.
Implicit embryogeny does not follow the step by step specification of the growth
process through instructions, it uses a series of interacting rules whose activa-
tion is not predetermined but highly parallel and adaptive. The embryogeny of a
natural organism is characterised instead by a many-to-one relation between the
genome enclosed in each cell of the organism to its phenotypic manifestation.
“Many-to-one genotype-to-phenotype mapping has been identified by numerous
researchers as an important property for evolvability “(Kumar and Bentley). Bor-
rowing the concept from natural embryology Peter Bentley and coworkers (Ku-
mar and Benley) have developed a form of implicit embryogeny which uses an
advanced variable length genotype GA as evolutionary machine. Each cell, which
assumes the form of a 2D or 3D geometrical entities in a CAD environment, has its
own genome constituted by a variable number of rules. Each rules is itself made of
a “precondition” section and an “action” section. The precondition section stores
information that regard the neighbourhood of the cell such as which neighbours
position is filled or empty. For a rule in a genotype of a cell to be activated, a
number of preconditions need to be matched by the surrounding neighbourhood
of cells.
When a rule is fired, it causes growth in a specific direction that match the require-
ment of the precondition. This system acts like the chemicals that activate or sup-
press genes in a cell’s chromosome, triggering pattern of cellular growth (Kumar

 genotype phenotype external
 embryogeny

 genotype phenotype explicit
 embryogeny

 genotype phenotype implicit
 embryogeny

Fig 11 external, explicit, implicit embryogeny

 14

Creative evolutionary systems

Creative evolutionary systems is an expression that wants to highlight the capacity
for evolutionary systems to create novelty, exploring the search space in a “crea-
tive” manner. One of the most important requirement for this to happen, is to
rely on a component-based representation of the genotype (BentleyP., Corne D.
2002). The representation of the genotype is the way it enumerates the search
space, or simply how a solution is represented at the search space level. With a
fixed-length parametrisation, evolution is only able to find the combination of pa-
rameters that feature a global optimum for the analysed scenario. It is clear that
with a fixed number of parameters, and a predetermined way to link them, the
evolutionary system cannot explore more than what is given to it. If the represen-
tation is instead based on components, which can be considered a set of building
blocks from which the solution or the phenotype is constructed, the evolutionary
system will “explore” the search space. Being the solutions, this time, not defined
by parameters, but by the components, the aim of the evolutionary system be-
comes to find the way to build the solution by changing the relations between
the components. It does not evolve only the details, but the whole structure that
characterize the phenotype. With a component-based representation of the gen-
otype (an explicit or implicit embryogeny), the dimensionality of the search space
can be altered, the structure of the solution can be redefined allowing for a full
exploration of the solution domain. When referring to architectural application
of “creative evolutionary systems”, if is often used the expression “body plan” in-
stead of genotype representation, due to the fact that the system evolves, most of
the times, 2D or 3D geometric entities. With a component-based representation
the “body plan” it is not defined a priori, being the definition of its structure one
of the result of the evolution.
The objective function is the way in which the designer embeds knowledge in the
system. Creative evolutionary systems usually do not have a static one criteria
objective function but rather multiple and dynamic to explore alternative search
spaces. Multi objective environments have been developed for evolutionary sys-
tem to rely on a set of evaluation criteria, exploring the search space from differ-
ent perspective. Fitness functions can also be based on Co-evolutionary approach
where the success of solutions in a population depends upon the success of solu-
tions in another population. This approach comprises the individuation of two or
a set of sub-systems which are epistatically linked and whose evolution depends
on the co-evolution of all the other sub-system/”specie” (Jackson, H. 2002). In this
way a solution will be subjected not only to the pressure of the “abiotic environ-
ment” but also to the influence of the “biotic environment”.
Along with a completely automated evaluation process, there is also the possibil-
ity of adding human interaction, the role of the human user being to judge solu-
tions that are presented to him. This judgement can be even the only evaluation
criteria for certain application or, part of a set of fitness functions, reaching a kind
of collaborative environment between the machine and the user. The main advan-
tage to introduce this form of collaboration, is to overcome problems due to the

Fig 12 John Frazer - Multi State Three Dimensional Cellular Automata

Fig 13 William Latham - Mutator

 15

 impossibility to define a clear and objective fitness function. This is often the case
when the evolutionary system try to evolve on the base of aesthetic criteria. The
other advantage is the possibility to help the system in case a local optimum oc-
curs. On the other hand, the rate at which a human can evaluate a solution is very
slow being solutions evaluated one at time. This can be just impossible for many
applications that require the use of very large populations and to run for many
generations. In this case, it is better to present periodically to the user only a small
set of solutions.
It should be clear that, with an embryogeny based on components and a “collabo-
rative” fitness function, the main goal of the evolutionary system is not to find a
global optimum. Exploring the search space to find “interesting solutions” which
still obey to design constraints and respect evaluation criteria, is what they focus
on.
What gives to these systems the ability to explore the search space in a “creative
manner”, it also causes the main problem in terms of efficiency and consistency.
Embryogeny based on components is the major contributor to the discontinuity
within the search space. Genotypes with very different structures can be mapped
onto phenotype that share close value of fitness. This causes the identification
of very different genotypes as part of the same region in the search space, even
if they are not. This effect is often worsened by poorly designed fitness function
which are not able to discern structural differences between phenotypes.
The nature of embryogeny based on components brings inherently about a cer-
tain degree of epistasis. Epistasis is the degree of dependency between the genes
in a genome (Bentley 1999). When having epistasis the phenotypic effect of a
gene (during the mapping process) is related to the alleles of other genes.
With explicit or implicit embryogeny, genotype are constituted by a chain of in-
terlinked instructions. The effect on one of these, depends on the effect of the
instruction that precedes or succeeds it. The problem when having a high degree
of epistasis is that every part of the design will be epistatically linked to any other
part , making any evolution hardly reachable. A small changes in a part of the
design would end in a series of changes in all the other parts, making very difficult
any improvement.
To summarize, embryogeny based on components, fitness functions that encour-
age the exploration of the search space and human interaction, can result in a
evolutionary system acting creatively.
Creativity in this context refers to the ability of such evolutionary system to be in-
novative and efficient in their search. They are capable to elaborate solutions that,
generation over generation of attempts, perform better and whose topology was
not predetermined or enclosed in the genotypic representation.

Fig 14 Karl Sims - two creatures competing for food source

Fig 15 Celestino Soddu - Shangai chinese garden walls generated with Argenia

 16

Chapter 2 | The structure of the system

This chapter starts by presenting examples of past works upon which this research
builds its foundations. It moves to a detailed explanation of the structure of the
system which is mainly based on the combination of a growth model and an evo-
lutionary technique. It follows the description of the objective function, which is
the set of design criteria used to navigate through the search space.

Precedents

In his paper “Exploring 3D design worlds using Lindenmeyer systems and Genet-
ic Programming”, Paul Coates explores the potential of an evolutionary system
based on L-Systems and Genetic Programming, where L-Systems are used as a
growth model (Coates et al. 1999). Their production rules, which are at the base of
the string rewriting mechanism, can be seen as sort of “master genes”. The spatial
representation can be achieved by interpreting with turtle graphics the symbols
in the L-System string genotypes.
A certain symbol in the string is an instruction to draw a building block in a particu-
lar position of the 3D environment, being the position determined by precedents
symbols in the string and by the position of already existing “blocks”. When I refer
to building blocks I mean the type of elements, spheres, cubes, octahedrons etc.
that will compose the evolved configuration. The biological analogy would bring
us to consider a building block as a cell in an organism, being the process by which
all the blocks are put together the growth of the organism.
Coates chooses not to rely on a 3D Cartesian Space but rather to represent the
structure’s form using the geometry of iso-spatial dense-packed spheres, the iso-
spatial grid first used by Frazer (Frazer 1995). The co-ordinates of the grid are
the vertices of close packed octahedrons. Elements (the building blocks of the
structure) can only be inserted at these vertices and each sphere has 12 equally
spaced neighbours. The main reason why using the iso-spatial grid is because it
offers a natural way to represent 3D forms without lack of homogeneity (Coates et
al. 1999). In 3D Cartesian systems the distance between a point and its 26 neigh-
bours is contingent upon the position of the neighbour, whether it lies on one of
the orthogonal axis or on a diagonal one. “The aim is to work towards the evolu-
tion of form with the minimum of preconceived notions” (Coates et al. 1999), by
means of the generations of computer programs that go through a process based
on Darwinian theory of evolution. The system was developed in Autocad using
AutoLisp, an Autocad version of Lisp, which was used to implement many Artifi-
cial Life techniques including Genetic Programming (Koza 1992). Fig 1 (left side)
shows one of the outcomes when the generated configurations are rewarded for
capturing the most particles possible. Particles are just others spheres that, by
moving in the 3D environment can hit the evolving structures. In this case they
successfully evolve, increasing their exposed surface area as much as they can, in
order to trap the most flies (the particles) possible. Fig1 (right side) shows instead
an evolved configuration when the objective is to maximise the exposure to sun

Fig 1 Coates | flytrap and suntrap

Fig 2 Galasyn | high surface area and airborne particles trap

Fig 3 Coates | Domino House

 17

Fig 4 Coates - “space” |“enclosure” 2D

Fig 5 Coates - “space” |“enclosure” 3D

Fig 6 Helen Jackson - “space” |“enclosure” 2D (minimization of “I” value)

.without creating overshadowing. Fig 2 shows the experiments carried out by
James Galasyn who, following the route first pioneered by Coates, developed an
analogous evolutionary system based on L-System and Genetic Programming in
2006. The way in which the emerging configurations are evaluated, in Galasyn’s
system, mainly relies on a “load propagation model” that he developed (Galasyn
2008) . This procedure is able to simulate the propagation of loads through the
structure of the generated configurations in order to assess whether they are sta-
ble or not. The model is able to recognise whether a failure occurs, for instance
due to an appendix of the body that cantilevers too much, according to a set of
abstract material properties that the user can specify. The structural stability is
indeed the first criteria requirement that has to be respected, a design constraint,
on top of which other design criteria can be added.
The other family of experiments carried out by Coates at CECA (UEL) were based
on Genetic Programming and generative grammar of forms where grammar, fol-
lowing Stiny and Mitchel (Stiny, Mitchel 1978), is considered to be “a lexicon of
primitive objects, and a syntax of transformations on those objects” (Coates et
al. 1999). GP allows the exploration of search spaces defined by an initial set of
axioms and production rules. Eventually, not just automated shape grammars but
also the emergence of grammatical rules and their mapped grammatical objects
will manifest. Fig 3 shows one the outcome that is possible to achieve when hav-
ing as “objects” (the terminal set) some rectangular boxes of different size. Rules
are simple instructions such as copy or move one the box along a particular direc-
tion, boolean subtract or add one box to another etc. Rules and objects are again
organised in a hierarchical tree data structures. The mapping, evaluation, selec-
tion, recombination and mutation of population of these, will eventually produce
spatial configurations that respond to specified criteria.

Coevolutionary approach to architecture

When talking about biological systems, coevolution refers to the adaptation of
an organism triggered by the adaptation of another one. Each system exerts se-
lective pressures on the other system affecting each others’ evolution. Coevolu-
tion can manifest in a “host-parasite” fashion or as “mutualism”. A mutualistic
coevolutionary system between two species produces life-cycle interaction which
leads, over generation, to co-adaptation (Thompson 1994). In layman terms, each
species benefits from the evolution of the other species. This symbiotic partner-
ship can produce highly complex behavioural pattern and physical characteristics
which are observable in many biological system such as wasp and the plant of fig,
hummingbirds and ornithophilous flowers, legumes and bacteria etc. Coevolution
is a one to one interaction but often is the case when many species evolve in re-
sponse to the evolution of other species, “diffuse coevolution” (Thompson 1994).
Although in coevolution both systems are themselves under the pressure of the
abiotic environment, is the biotic environment that exerts the highest pressure re-
sulting in evolutionary adaptation. As far as architecture goes, coevolution can be
seen as an alternative method to mono and multi objective optimisation. Instead

 18

than having only an architectural system to evolve, we can add information re-
garding regarding the relations that occur between its sub-systems. Instead than
evaluating a spatial configuration from different perspectives, it is possible to de-
scribe it as the expression of multiple systems. This entails the identification of
two or more different parts which have their own identity, but whose behaviours
and patterns are interlinked (Coates et al. 1999).
Once these systems have been identified, coevolution acts as the most prominent
way to exert pressure leading to a symbiotic process where the fitness of the sys-
tems evolves through co-adaptation (Coates et al. 1999).
Coates identified as two closely, yet separated, species “enclosures” and “space”.
“Enclosure” (black squares in fig 4, black spheres in fig 5) represents wall systems
while “space” (grey squares in fig 4, grey spheres in fig 5) represents the actual
space used for programmatic reasons. “A good enclosure is defined as one which
surrounds a maximum of its space individual, while a good space is an individual
with a maximum of itself inside the enclosure. Each individual can therefore be
given a percentage score; the overall symbiotic score is the mean of these two
percentages” (Coates et al. 1999).
“In terms of configurations of solid matter a good enclosure form is one with a
high enclosed volume compared to the volume of the configuration” (Coates et al.
1999). Same applied for the “space” species. The volume ratio of the two species
represents, hence, the fitness criteria for this single-goal coevolution.
In her paper “A Symbiotic Coevolutionary Approach to Architecture” Helen Jack-
son (Jackson 2002), after Coates, shows the development of the “enclosure”|
“space” symbiotic system based on three main design criteria:

• the minimisation of the I value (Hillier 1996, p.283 cited in Jackson 2002) which
is an index useful for the recognition of well-integrated spatial layout (the lower,
the more integrated is the space)

• the circulatory route within a building in order to ‘link spaces in a way that ena-
bles their configurational requirement’ (Coates et al. 1999)

• aesthetic of the created envelope of the generated forms (phenotype of the
individuals)

Following this line, Galasyn further developed his system to achieve the growth
and the evolution of his “evolved structures” in a co-evolution fashion. The body
of the structure can be built by multiple parts which are independently grown sub-
jected to structural evaluation. At the same time, they are also scored to promote
their union in order for them to support each other, in this way triggering struc-
tural co-evolution. Although some results have been produced the co-evolution
approach still need to undergo major developments.

Fig 8 Galasyn | Coevolved high surface area structure

Fig 7 Galasyn | Coevolved stable elevated structure

 19

String rewriting techniques : L-Systems

An the evolutionary system needs to have a “mapping” procedure interpreting the
information enclosed in the genotype representation to produce the phenotypic
representation. To avoid to search only in a limited region of the solution domain,
we need to embed into the system a model of morphogenesis which is able to al-
low the emergence of complex entities under evolution.
Different model that can simulate biological growth have been developed since
Turing introduced the reaction - diffusion model in 1952 (Turing 1952). L-Systems
are based on the concept of rewriting which consists in the replacement of char-
acters in a string of symbols with other string of symbols (Prusinkiewicz, Linden-
mayer 1990). The string used to start the rewriting procedure is called axiom,
while the rules that specify which character of the axiom has to be replaced with
other set of symbols, are called production rules. After the first substitution, the
newly formed string (originally the axiom) is scanned. The characters that match
the pattern designated by the production rules are replaced again. This goes on
until the specified number of iterations is reached, usually creating string of con-
siderable length even when this number of iterations is set to be small.
To run a string rewriting system we need to think at a vocabulary of admissible
symbols each associated to a particular meaning (Prusinkiewicz, Lindenmayer
1990). With turtle interpretation of strings, first introduced by Prusinkiewicz, we
use the analogy of turtles to represent a point moving in a 2D or 3D environment.
A symbol “F” (meaning forward) tells the turtle to move forward for a certain
length and other symbols such as “+” and “-” tells the turtle to steer right or left
according to the verse of the chosen world coordinate system. Fig 9 gives an ex-
ample of what kind of pattern can be created if two successive position are con-
nected with a line.
In this particular case the symbols “+” and “-” tells the turtle to rotate 90 degree
around the z axis. This can be easily extended in 3D when we think at three pairs of
symbols each of which tells the turtle to rotate around one of the coordinate sys-
tem axis (fig 9). Fig 10 presents a family of classic Koch curves which are created by
applying very simple productions rules and with a very small number of iterations.
Starting with the axiom F-F-F-F, which would be represented by a square, each F
is iteratively replaced by the production rule(for instance F —> F-F+F+FF-F-F+F)
(Prusinkiewicz, Lindenmayer 1990). These simple example fully demonstrates the
power and the beauty of L-Systems, being them able to produce highly complex
patterns starting with very simple rules.
L-Systems have been developed to a great sophistication in order to model differ-
ent phenomena of morphogenesis such as the differentiation of cellular layers.
As far as our project goes, I will deploy the basic form of rewriting system, above
explained, using stochastically generated production rules and having the struc-
ture of the strings organised in a hierarchical manner (stochastic and bracketed
L-Systems).

n=4, d=90
F-F-F-F F —> F-F+F+FF-F-F+F

n=4, d=90
F-F-F-F F —> FF-F-F-F-F-F+F

n=4, d=90
F-F-F-F F —> FF-F-F-F-FF

n=4, d=90
F-F-F-F F —> FF-F--F-F

Fig 9 graphic interpretation of turtles FF-F-FF+FF+F-F-F+F+FFF

Fig 10 family of Koch curves

x

y

z

-

+

&

^

/

\

 20

L-Systems and Genetic Programming: Generative Engine

At the very heart of the evolutionary system lies the combined action of L-Systems
and Genetic Programming which constitute the generative engine of the system.
In order to represent the genotype, a string of symbols is first generated using
string rewriting systems. Axiom and production rules are randomly generated. The
symbols chosen to generate the strings, following Prusinkiewicz in “The Algorith-
mic Beauty of Plants” (Prusinkiewicz, Lindenmayer 1990), are :

• F, is interpreted as “move forward”, keeping the previous orientation, and placing
a cube in the reached position. This cube constitutes one of the “building blocks”
whose arrangement in cubical package makes up the structure of the individuals.
I choose to explore the space using a 3D orthogonal grid rather than the more el-
egant Iso-Spatial one. The reasons for this choice is first to not over-complicate the
process. The Iso-Spatial grid requires with use of rhombic dodecahedron as build-
ing blocks to achieve fully connectedness in the individuals. The other reason is to
test the an element different from the already experimented spheres and rhombic
dodecahedron by Coates and Galasyn.

• +, yaw left by 45 degree around the z axis (fig 9). The value of the angle is im-
posed by the cubical neighbourhood which surrounds each building block

• -, yaw right by 45 degree around z axis

• &, pitch down by 45 degree around y axis

• ^, pitch up by 45 degree around y axis

• £, roll left by 45 degree around x axis

• $, roll right by 45 degree around x axis

• %, turn by 180 degree around z axis

The interpretation of strings formed by these symbols turns to generate not more
than a series of blocks piling on top of each other. To give the individuals the pos-
sibility to develop appendices or to branch off, we need to represent the genotype
in a hierarchical manner, parsing the strings into tree data structure. This is already
offered by “bracketed” L-Systems which use the additional symbols “[“ and “]” to
create branches. Fig 13 shows an example of a bracketed string expression which
is rendered by connecting the position reached by the turtle with lines. Every time
a [(open branch character) is encountered a new branch is created which can
develop further more if other [are met. When a] (close branch character) is met,
the turtle goes back along the path, remembering in which position it was at the
time the current branch was open (Prusinkiewicz, Lindenmayer 1990). This system

Fig 11 placing the building blocks

Fig 12 turtles’ neighbourhood

FF+F&F

F+F^F+%F-F&F&F-%F-F^F

F+F
F+F^F

F+F^F+F+F

the vector owned by
each position, deter-
mines next position
when applying one of
the possible turns. In
this way there is no con-
fusion with the admissi-
ble positions and there
is no need to use any
matrix of transforma-
tion

the position of each building block
in the cubical grid gives also the
orientation. In this way if a block
is at position (1,0,0) its own direc-
tion is the x vector

 21

has been used to model numerous species of plants (Prusinkiewicz, Lindenmayer
1990).
As far as architectural design goes, this lead us to intend the organization of space
and system of spaces as trees, or more generally, as a branching structures. As al-
ready outlined by Coates (Coates et al. 1999) there are different reasons why this
can be useful in architectural context:

• the structure that are generated are inherently consistent in terms of connect-
edness. Every new building block grows starting from an already existing part of
the structure so that there can be no gaps.

• the connectedness of the configurations is useful to design spatial systems be-
cause all their parts are reachable through viable paths.

• the recursion logic of the string rewriting system offers the possibility for the
generated configurations to feature symmetry and self-similarity without this
being embedded in the initial representation. This leads towards geometrical ar-
rangement of spaces as expression of process rather than representation.

Fig 14 shows one of the spatial configurations that are possible to obtain when
evolving the initial randomly generated genotypic representations. Although it is
not obvious to look at such a structure as a tree, it is very close to them. They start
from an initial position which is the root of the tree and develop by piling, blocking
and branching under the pressure exerted by their environment.
As far as Genetic Programming goes, the bracketed form of the string expression
s favours their parsing in tree data structures, which are the working genotypes
of the individuals. A tree data structure can be literally thought as a tree with a
root, branches and leaves. A joint between two branches can be thought as a node
which contains information. A node it is just a container, where is possible to store
any sort of data such as the character symbols of the string expressions, fig 14.
Every part of the string, which is enclosed by two “branching characters” ([,]) is
one of the node of the tree. If the nodes belong to the same parent, which means
that they have the same depth level in the tree, they are called siblings. The sym-
bol to indicate when two nodes have the same level is “|”. Each node is usually
both parent of deeper level nodes and child of lower level ones. The nodes that do
not have any child are called terminals or leaves of the tree. Tree data structures
have a very broad range of applications. To give an idea, it is sufficient to think
at the system of folders that we build on our personal computer usually starting
from c:\. This is represented as a tree data structure, c:\ being the root, the folders
being the nodes.
Differently from the computational environment in which Coates developed his
system (AutoLisp) (Coates et al. 1999), C # does not offer the “EVAL” command. By
using this command is possible to evaluate bracketed string expressions, getting
both their parsing and their interpretation for free. Although this has to be manu-
ally implemented in C #, the advantages of using this computational environment

Fig 13 bracketed string expression

Fig 14 spatial systems as tree branching structures

F[+F[+F][-F]][-F[+F[+F]
[-F]][-F]

n=5, δ=22.50
axiom
X
production rules
X→F-[[X]+X]+F[+FX]-X
F→FF

axiom
&F+-F^+&&

production rule
F—>+-F^+^
[F-&^F^]F&F|
F&|&^&[&-|
^F^+F|-F
|-F^+F|F^]

 22

 “ “

 “ “ %

 F%F F - F%F F F F%F

 -F+ F F%F -F+ -F+ -F+

 -F+ F- FF %-- +F FFF %F% --

 ++ -F && +-- %% F- ++

axiom —> F
production rules
F —> [F+F%F]
+ —> [-F+]
$ —> [F^-F]
^ —> [$F+]

n iteration = 10
String expression
[[F[-F+]F%F|-[F[F-|-F+]F%F|-F+]F[-F+[FF[++|-
F|&&|+--]|%--|+F]F%F]%][F[-F+[FFF[%%|F-|++]|--
|%F%]F%F]

go far beyond this little extra work.
To parse a bracketed string expression in to a tree data structure we need to read
the string, recognise every time an open or close or sibling branch character is
met and the help of an external “collection” called “Stack”. A Stack is very close
to an array but it has the special ability to retrieve the last data inserted in the
collection (last in, first out). We can divide the parsing procedure in 4 main parts;

• [, a open branch character is met ; a new branch is about to be created which
means that we have to assign to the current node of the tree all the information
red so far. After that, this node is “pushed” into the Stack collection in order to be
stored and remember which height of the tree this branch has been opened at. A
new node is also created and assigned as current node.

•] , a close branch character is met; we need to pop the last node inserted out of
the Stack collection and check if the next character in the string is of type [or].
Their occurrence means that there are other siblings on this level of the tree and,
therefore, the branch is not yet completed. If this is the case, a new node is cre-
ated and assigned as current. In opposite case, the branch can be considered com-
pleted an no other node are needed.

• | , a sibling character is met; a new node is created that stores the information
red so far, the node is then appended as part of the current branch

This operation is also called “Deserialization” and this is how the genotype of our
individuals are represented. The opposite procedure “Serialization” takes a tree
data structure and turns it into a bracketed string expression. This operation is
needed every time a new production rule is created in order to assess whether
there is a malformed string (for instance due to a missing bracket). In this way
integrality of data is ensured because the genotype becomes inherently correct.
To summarize, string bracketed expressions are generated using L-Systems which
are afterwards red using 3D turtle graphic interpretation. The string is parsed in
to a tree data structure which translates the information encoded in the string
into a sort of hierarchical library of data. The tree data structure genotypes are
afterwards used to perform genetic operations such as cross over and mutations.
Fig 15 shows how one of this “object” can be represented as a tree of nodes each
storing a certain amount of information which are linked in a hierarchical manner.

Fig 15 parsing the string expression into a tree data structure

 23

The hierarchy of the structure

When interpreting the bracketed string expressions, a first pattern, which is the
direct map of the genotype, is created. Following the instructions encoded in the
string, “building blocks” are placed in the 3D environment generating what can be
thought as a “skeleton”, the internal structure of the individual.
A building block is not only a geometrical entity, but can be thought as a unit of
data such as the position of the centroid of the cube, its exposed surface area or
its volume and so on so forward. Every time a “building block” is created, it is also
stored in a special kind of array which in C # is called “Dictionary”. A “Dictionary”
can store a certain number of elements and assign each of them an identification
number. In this way, for each “value” there is a “key” which is its own ID. This al-
lows to efficiently retrieve information related to each “building block” and avoid
to have confusion or replication of objects. For instance, when interpreting the
string expression, even if its hierarchical structure is correct, there can be blocks
that share the same position. This is not only a waste of computational resources
but also a major problem when propagating the load force vectors into the struc-
ture to assess its structural stability.
The Dictionary offers a very simple way to tackle this by simply assigning as the
ID of the blocks, their centroid position. Every time a block is about to be created,
a quick check in the BlocksDictionary evaluates if the ID (the position of the cen-
troid) is already present. If this is the case, no block is added to it or created in
the 3D environment. This procedure gives full control of the structure during its
development and creates the possibility to add other two layers to it.
The body of the individuals that is generated every time a genotype is mapped,
can be thought as divided in three interlinked systems whose bounding make the
whole structure. The structure generated only by interpreting the string expres-
sion looks like the one shown in fig 16, left side. I call these type of blocks the
“internalBlocks”. Each block is also designed to be aware of its immediate neigh-
bourhood, for instance by recognising where they are located within the whole
structure, and whether there are not taken position where would be possible
to add other blocks. This method is used to create the “boundaryBlocks” of the
structure, which are the layers shown in fig 16 right side. These type of blocks can
be thought as the foundation for the structure. With the same method, the blocks
are also able to detect the number of neighbours that surround them and to gen-
erate, whether is possible, an additional layer of cells , the “envelopeBlocks”. This
constitutes an external envelope of the structure as shown in fig 17, left side. Al-
though thought as separated, these systems are strongly interlinked by the series
of force/reactions that each block exert on its neighbours, independently by the
system which belongs to.
I would quite obviously think, in terms of architectural design, at the internal-
Blocks like both the skeleton and the network of paths whereby is possible to
reach every position in the body, the boundaryBlocks as the foundation and the
envelopeBlocks as the available “space”.

Fig 16 internal blocks | boundary blocks

Fig 17 envelope blocks | the three systems together

 24

The load propagation model

One of the biggest challenge when developing an evolutionary design system is
the implementation of perfomance-based evaluation tools that can judge the indi-
viduals effectively. Even more difficult is to implement tools that are able to work
with intensive quantities such as distribution of stresses in a body under load, or
the induced pressure caused by the impact of wind on the external surface of
the body. Most of the times designers rely on the methods offered by available
software, based on finite element method or partial differential equations. These
techniques are very expensive in terms of computational recourses and time re-
quirement which is crucial when the number of solutions to evaluate reaches the
order of hundreds of thousands (which is the working case rather than the excep-
tion).
Recently developed approaches rely, instead, on vector fields whose elements
hold local information that can propagate through the body under examination.
In general, these models are less accurate compared with Finite Element Methods
but they are definitely faster.
James Galasyn developed a model for load propagation in 2D or 3D discrete me-
dium which is mainly based on vector algebra and programmatic implementation
(Galasyn 2008).
 Although the assumptions on which the model is built up have to be further elab-
orated, it represents a good first approximation method that can be plugged in the
evolutionary system to perform structural evaluation.
The load propagation model allows to achieve structural evaluation of each in-
dividual which can be used for different purposes. As a design constraints the
structural failure of a solution does not let its genotype to be transmitted to next
generation. The structural constraints is usually always kept as first rough selec-
tion of search space. Eliminating all possible body plans that are not structurally
stable constitutes a way to size down the dimension of the solution domain .
As a design criteria the load propagation model can be used to drive the solution
towards structural configurations with minimum average induced reactions. This
can lead, if a forces-to-deformation model is implemented, to achieve solution
with minimal energy deformation.
The medium was originally modelled as two-dimensional hexagonal packing of
circular blocks, and it can be easily extended for a 3 dimensional cubical packing,
which is how the structure of the individuals is made of.
Fig 18, left side, shows 4 blocks connected through a series of joints j1,j2,j3, which
are represented as pink points, located at the middle position between the area
centroids of each pair of blocks. Joints can be found, hence, at the corner of a
block and at the middle of its edges. Joints and blocks can bear a limited amount
of load until their mechanical properties, axial and torsional strength, are ex-
ceeded by the induced forces. The external load,here represented by the orange
vector shown in fig 18, is the force caused by the weight of the internal block. If,
propagating through the blocks, it causes structural failure in some of the joints,
the structure is considered to be not stable.

Fig 18 gravitational load vector | translational components

Fig 19 torsional forces

Fig 20 torsional component | net forces on joints

j1 j3

j2

CM

load vector

j1 j3

j2

CM

TrC1

TrC2

TrC3

j1 j3

TC1

j3toCM j1to
CM

j1 j3

j1toj3 TC2j1toj3

j1 j3

j2

CM

TorC1 TorC2 TorC1 TorC2

TrC1 TrC3

Net1

Net2

Net3

 25

The one block problem

The one block problem (Galasyn 2008) can be represented by having three dark
‘boundaryBlocks”, which act as an infinitely rigid constraint for the structure, the
lighter grey one being an “internalBlock”. The whole structure is indeed a rigid
body in equilibrium. CM is the center of mass which, in this case, is coincident
with the area centroid of the internal block. The load is transmitted to the bound-
ary blocks by means of the joints j1,j2,j3. The translational components of the
induced forces lie parallel to the vectors connecting the joints to CM. Fig 18 shows
the force components represented by violet vectors TrC1, TrC2, TrC3. The torsional
components TC1 and TC2 lie orthogonal to the vector joining j1 with CM and j3
to CM, respectively. The action of TC1 causes induced torque moment on j1. This
torque induces a rotation around j1 which has to be counteracted by the other
joints being S a rigid body in equilibirum. For this reason j3 exerts a reaction which
is assumed to be translational, TorC2 in fig 20, and directed orthogonal to the vec-
tor joining j1 and j3, the yellow line in fig 19.
The same applied for the other joint, j1, which has to bear the translational force
TorC1 induced by the torque moment caused by the action of TC2. The resultant
forces by the sum of translational and induced-torque components are the net
reactions acting of the joints, Net1, Net2, Net3 in fig 20.

Many blocks and 3D extension

The one block problem can be easily extended to configurations that feature more
than one internal block such as the one shown in fig 21. When having more than
one layer of internal blocks, the distribution of forces is computed by slicing the
structure layer by layer. Starting with the closest layer to the boundary block the
structural stability of this first substructure is assessed. Every time a new layer is
analysed, the already examined layers are treated as boundary (Galasyn 2008). Fig
21, right side, show three successive substructures with their gravitational load
vector.
If in two dimensions all the forces resolve into translational components, in 3 di-
mensions the load propagates with both translational and torsional forces accu-
mulating on each joint. Both the induced net translational and torsional forces
are, hence, tested against the axial and torque strength of the joints.
Although the mechanical properties of the joints do not have any relation with
real material mechanical properties, being them just arbitrary numbers, the mod-
el is able to predict structural failure due to over pronounced cantilever arms,
such as the one shown in fig 22. The darker blocks are the boundary of the struc-
ture and the red points show that structural failure occurred at that position in
the structure.

Fig 22 red joints show structural failure

Fig 21 2 blocks problem | successive substructures with load vectors

load vector

failed joints

j1 j5

j2

CM

j4j3
TorC1

TorC2 TorC3
TorC4

Net1 Net5

Net2

Net3

Net4

j1 j5j2

CM

j4j3

CM

 26

Fig 23 flow of induced translational and torsional forces in the structure

 Morphogenesis under load

The structural feedback that comes out of the analysis performed by the load
propagation model can be compared to one achievable by static analysis which
is usually done on much simpler structures than the one shown in fig 23. The
automatization of the process allows to experiment the method on highly com-
plex configurations having a quick feedback on their structural behaviour under
the specified loads. Analysing the structure in its final configuration would give
information on its stability only at this stage. If the individual has gone through
structurally unstable states it is not inferable from this type of analysis. I will use
the analogy between the process of interpretation of the L-System genotype, in-
deed the placing of the building blocks, to the organic developmental process of
an organism. None of the parts of a living organism can grow if the whole body
is not able to bear the loads that it is subjected to. If instead that analysing the
individual at its final configuration we let the applied loads to propagate while
it grows, the two processes become quite close. This is possible to achieve by
checking the structural stability of the individual different times during its devel-
opment, working with temporary substructures instead that the final one. If one
of these substructures report structural failure, the whole solution is automati-
cally discarded. If it does not, it is allowed to continue its development. It is worth
remembering that for the L-System genotypic representation, building blocks can
be placed only starting from already existing block in the structure. This makes
possible to simulate a developmental process under loads. The procedure puts
additional constraints, further decreasing the size of the region of the solution
domain to search through (which nonetheless will be still immense). Not only an
individual has to be stable at his final state but also during all the phases of it
development. It means, in other terms, that these structures, within the limits of
the simulated environment and the mechanical properties of their constituents,
are autonomous in their morphogenesis without needing any additional support.
Fig 23 shows one the evolved configurations with the flow of induced translational
and torsional forces in its body. Fig 24 shows a close up of one of the boundary
and the part of the structure where the bifurcation occurs. The translational and
torsional components have been rendered using the following colours gradients:

“torq” and “axial strength represent the maximum value of load that a joint can
bear, torsional and translational component respectively. These two values can be
changed to test different structural response to loads and, consequently, trigger
different morphogenesis. Fig 24 translational components | forces at boundary

< axial strength/7

< axial strength/6

< axial strength/5

< axial strength/4

< axial strength/3

< axial strength/2

< torq strength/7

< torq strength/6

< torq strength/5

< torq strength/4

< torq strength/3

< torq strength/2

 27

Selection : an Elitist approach

As already said in chapter 1, the selection operator has the duty to rank the solu-
tions according to some criteria with the objective to preserve good genetic ma-
terial, still allowing differentiation. In order to achieve an effective searching into
the solution domain, the possibility to incur local maximum should be, as much as
possible, eliminated by exploring multiple directions.
The roulette selection, developed by Goldberg (Goldberg 1989), provides a meth-
od of selection where the probability for an individual to be chosen is proportional
to its fitness value. It gives a high probability to fitter individuals but also leaves
a certain possibility to the less fit. The slices of the pie chart shown in fig 25,
represent fitness values of the individuals for a generation, the darker the bigger.
More precisely each slice indicate the percentage of each fitness value in respect
to the sum of all the values. To chose a solution, a random fraction of this sum is
taken, acting as a threshold. The fitness values are summed in random order until
the threshold is reached. The last value added corresponds to the solution to be
selected, favouring in this way individuals that have bigger fitness values being the
threshold reached faster by adding big values, fig 25 right .
An advantage of this technique is to encourage multiple searching directions but,
as a drawback, good genetic material is often lost over generations (Kramer, Kunze
2005) .
One of the major problem when using Genetic Programming is the disruptiveness
of its genetic operators (crossover and mutation), which can easily lead to the loss
of good solutions when recombining their genotypes (Bentley 1999). It is worth
mentioning that with GP the structure of the body plan is not embedded but is
evolvable. This means that even when a very good solution is found, there are no
guarantees its genotypic representation will be kept over generations. For this
reason a selection operator based on elitism, rather than on selection proportion-
ate to fitness, seems to be a more sensible approach. In contrast to the previous
strategy, elitism entails the copying of a certain number of best performing mem-
bers into the new generation. In this way good qualities will not be lost through
mutation and cross over. These members remain unaltered until better perform-
ing individuals have been found, acting as a source of good genetic material. The
diagram in fig 26 shows a typical workflow through a series of generations. A fixed
or variable number is chosen to be the size of a subset of each generation, the
“parents”. Those are the best performing solutions within a generation which is
created by recombining their genotype as many times as the total number of indi-
viduals is. The magenta ellipses in fig 26 represent those solutions that were cho-
sen to be parents and also manage to survive from one generation to another be-
cause no other solution outperform them. Over generations, there is an increase
of “long living” solutions which can cause the searching to be restricted to a very
specific region of the solution domain. To avoid this drawback, it is possible to set
a maximum number of generation an individual can go through, being it discarded
when this limit is reached.

Fig 25 Godberg’s roulette wheel | selection proportionate to fitness

Fig 26 elitism | best performing solutions are kept over generations

6

n

4

5

3

1

2

parents 1

parents 2

parents 3

parents n

generation

 28

Genetic Operators : CrossOver and Mutation

Recombining the genotypic representations of pairs of selected individuals is usu-
ally performed by swapping two or more parts of their genotype, making two or
more new genotypic representations. This shuffling of information ends by gen-
erating a new population of configurations that will share same traits with their
old parents and present completely new features. When using explicit or implicit
embryogeny, the difference between the individuals of two successive genera-
tions is very neat at the beginning of the evolution, while it generally tends to
be less pronounced over generations. The inherent disruptiveness of the genetic
operators, when working with Genetic Programming, is mainly due to the tree
data structure nature of the genotypic representation. Fig 27 shows the typical
“one-point” crossover technique which starts by selecting a random node position
in both of the genome that are going to be bred. All the other nodes below the se-
lected position are designated to be exchanged with node coming from the other
genome, which have undergone the same process. It is clear how dramatic is the
change in the structure of the two new genome compared to the parents’ one.
This change in topology of the genotypic representation is fully reflected in vari-
ability of “body plans” in the phenotypic representation. If only a small set of
symbols changes in the L-system strings bracketed expression, its interpretation
is completely altered. What said so far has always been seen as a serious prob-
lem which can effectively disturbs the evolutionary endeavour. Small variations
of the genotype should reflect in small variation of the phenotype (Bentley 1999).
On the other hand, this is also what gives to an evolutionary system an immense
source of material to work with. To tackle this problem, different type of genetic
operators have been developed by GP practitioners, amongst with, a one point
crossover only between genotypes that share similar hierarchical structures (Poli,
Langdon 1997).
The approach that has been taken here instead, is to work only with the produc-
tions rules rather that with the whole genotype. A production rule is the sequence
of symbols that is recursively replaced, when matching characters occurs, to form
the string expression. These rules can be parsed into tree data structures, being
them part of the larger string that they generate, which is why crossover can be
performed on them rather than directly on the genotypes. In this way breeding
can happen in an abstract space without being affected by the structure of the
genotypic representations.
Mutation is here implemented as a chain of events whose happening is stochastic.
The most common mutation, when working with tree data structures, are the
addition, deletion or copying of new branches as well as the mutation of single
nodes. Fig 28 shows a series of mutation such as the inversion of branch a, whose
branches c, and e have been eliminated, the deletion of branch b which has been
substituted by d, a deeper level branch of a.
Mutation is particularly important to introduce new genetic material when the
degree of variability between two successive generations has reached a very low
value.

Fig 27 cross over of two tree genotypes

Fig 28 copy, delete and add branch mutation

a b

c d

a-c-e

e

d

a

a

b

b

 29

The software workflow

EvolvedStructures, the name of the evolutionary system here discussed, was first
created by James Galasyn (Microsoft) who took as model the experiments carried
out by Coates at CECA (Coates et al. 1999). I have further developed this system
by modifying part of its structure, adding new features and building a new layer
which has brought it to be converted in to a plug in for Rhino 3D (McNeel). The
application has been written in C # using the .Net Platform launched by Microsoft
in the year 2000. C # is an Object Oriented Programming language, an object be-
ing a structure containing data and methods that manipulate other data. What
follows is a small overview of the key concepts of an Object Orientated language
which will ease the explanation of the software workflow avoiding to confuse the
reader with a terminology who he/she might be not familiar with. The main con-
cepts are :

• “A class is simply an abstract representation of a type of object; think of it as a
blueprint that describes the object. Just as a single blueprint can be used to build
multiple buildings, a class can be used to create multiple copies of an object”
(Classes and Structs , C# Programming Guide).

• A property can be thought as an attribute that belongs to the class, and indeed
to the object that reference it. For instance, each node in the tree data structure
genotypes is an object that references the class “node”. An object node can re-
trieve different type of information such as which other node is its sibling or which
one is its parent. These are both properties of the class “node”.

• A method is something that can be quite closely compared to a “function” in
Visual Basic or script environment. Through methods, objects perform actions on
data, other objects or on themselves. For instance one of the methods of the class
EvolvedStructures is responsible to interpret the bracketed string expressions that
comes from the L-System, generating the series of building blocks that will form
the structure of the individual.

• Events tells objects to perform an action if a specific occurrence has taken place.
To give an idea clicking one of the bottom of the mouse is an event.

• Encapsulation means that a group of related properties, methods, and other
members are treated as a single unit or object.

• Inheritance is the ability to create new classes based on an existing one. In this
way the new class inherits all the properties, methods and events of the base
class. For instance the class BlockStructure, which is responsible to organise the
body of the individuals in three interlinked parts, is inherited by BlockStructure3D,
which adds specific methods and properties for the 3D case.

Fig 29 abstract workflow of the system

 Rhino plug in

 EvolvedStructures
 Library

 L-System Library Tree DataStructures
 Library

 BlockStructures

 Genetic L-System

 Mutator

 Parser

 Tree

 Node Collection

 Node

 EvolvedStructures Solvers

 Building Blocks

 Evolvers Render

 30

ents classes although they implement the same methods, properties and events
in a different way. This is extremely convenient especially in big application be-
cause it allows to use same name of items without worrying about the particular
object that is in use.

The diagram in fig 29 show how the different modules of the application are linked
together to build the evolutionary system. The software is mainly composed of
three libraries :

• the Tree Library hosts all the classes that it is necessary to implement to work
with tree data structures. Node, Node Collection and Tree are the main classes. An
object of type Node is the elementary unit of the genotype, a collection of these
objects make a branch (Node Collection) and a series of node collections forms an
entire tree.

• the LSystem Library contains everything concerns the production of the brack-
eted strings rewriting technique. Part of this library is also the series of classes
that forms the Mutator operator and the implementation of the Parser. This last
module is the one responsible to convert the genotype expressed as strings into
tree data structures.

• the EvolvedStructures Library constitutes the core of the application being the
place where evolutionary engine is implemented. It comprises in 6 main modules,
a module being a series of classes. Buiding Blocks for the definition of the units
that form the body of the individuals. BlockStructures that organise the blocks in
different system of blocks, each having a specific role such as boundary, internal
and envelope. EvolvedStructures is responsible of the graphic interpretation of the
bracketed string expressions coming from the Genetic L-System module. Evolvers
and Solvers are series of classes whereby the design criteria are encoded into the
system. Evolvers represent the definitions of the criteria, Solvers test the gener-
ated individuals against the criteria. Finally, the module Render takes the informa-
tion enclosed in each phenotypic representation and feed the 3D CAD package
(Rhino 3D) for their visualization.

I designed the application to be user-interactive making what can be called a “col-
laborative evolutionary system”. The user is able to exert his judgement independ-
ently from the selection performed by the system. In this way if there is disagree-
ment on the chosen evolutionary path, the user can deviate it leading the system
to explore other regions of the solution domain. This is mainly done by surfing a
generation of individuals and altering the score of a configuration that, according
to user’s criteria, has been underestimated by the system. It is also possible to
completely eliminate more than one solution from the current generation if need-
ed. In order to monitor the process data are sent to an Excel spreadsheet while
the application runs, allowing the user to have statistical feedback in real time on
the fitness trend. Fig 29 monitoring the fitness trend

Fig 28 user interaction

100

150

200

250

300

1

2

3

4

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

1

2

3

4

5

6

generation

fit
ne

ss
 s

co
re

in
di

vi
du

al
s

 observe current
 generation ?

which individual ? input new score choose span to
render generations

 continue to next
 generations ?

span span span

 31

Chapter 3 | Working with the System | Experimental Results

In this chapter I present some of the experimental results obtained so far testing
different design criteria scenario such as the evolution of bridge like structures
and tall configurations. The way in which we should interpret the results is, in my
opinion, threefold:

• we should analyze the outcomes under a technical perspective and check if
there is any positive feedback between what the system produces and what is
embedded in the design criteria that we specify

• we should be able to identify possible expressions of architectural design in the
solutions that system continuously present us to fit them in different scenario (this
is of course the tricky part)

• we should leave the system enough open for it to occasionally surprise us by
presenting to our eyes something that we would have never considered as feasi-
ble option.

The word system, from now on, will always comprise the presence of the user, be-
ing the feedback created by the interaction between the two parts that generate
experience and can potentially lead to novel expression of design.

Early experiments: the emergence of symmetry, bridges and helices

The first series of experiment is conducted without encoding any particular de-
sign criteria but just having structural feasibility as design constraint. This means
that any solution that presents structural feasibility will be admitted to be a “par-
ent” for the next generation until the number of parents per generation has been
reached. It is worth remembering that a parent is just a solution that perform well
(in this case which is just structurally stable) which is extracted by a generation
after having evaluated all its elements. Parents are the ones that create next gen-
erations by recombining and mutating their genetic material. Although a universe
of possible body plans would be available just by having structural feasibility as
design constraint, the emergence of quite recognisable pattern exhibits frequent-
ly. Amongst the others, individuals featuring symmetry and sometimes bilateral
symmetry are worth reporting the most (fig 1). What should be highlighted is that
symmetry arises spontaneously out of a process of evaluation that test “design
proposals” against an environment. The environment here is constituted by a
vector field of forces that simulate the presence of gravity and the consequent
induction of an internal vector field of reactions that counteract it(as explained
in Chapter 2, Load Propagation Model). In so doing, a solution that happen to be
symmetrical, is most likely to be stable, certainly having balanced weights. This
holds until the induced forces do not exceed the mechanical properties of the Fig 1 emergence of symmetry

 32

Fig 2 emergence of bridge structures

Fig 4 double helicoidal branch | bamboo flowersFig 3 emergence of helices

building blocks and the joints. By combining structural feasibility with simple eval-
uators based on geometrical measurements, the formation of many other pat-
terns can be encouraged. Bridge-like structures are not difficult to be found if,
beside structural feasibility, the individuals are rewarded based on the size of their
span along a direction orthogonal to the gravity vector, for instance along the x
or y axis. Along with this, the individuals are also rewarded for having the small-
est possible number of building blocks positioned at the “ground level” i.e. z=0.
The score of the solutions will be, hence, directly proportionate to these figures
leading to the formation of truss-like structures. If the obtained score is made in-
versely proportionate to the total number of building blocks, the structures tend
to feature slenderness (fig 2), this triggering an economization on the amount of
used material. Examples of this topology are the bridge like structures shown here
in fig 2 and the three “legs” arch shown in fig 23 in Chapter 2.
If the structural feasibility is coupled with fitness proportionate to the height of
the individuals, helices patterns exhibit very frequently. The structures, being en-
couraged to grow in the opposite direction of the applied load, the gravity, find
convenient to develop in an helicoidal pattern rather then straight. This is be-
cause helices tend to minimise the torque momentum induced by the presence of
groups of blocks that are not aligned with the Z axis. Fig 3 shows a generation of
evolved single branch helicoidal structures that have developed starting from not
more than a bunch of amorphous pattern of blocks. The emergence of multiple
branches spiralling along the Z axis does exhibit frequently as shown in fig 4.

 33

Fig 6 design criteria : local accessibility

Stable high structures | towards architectural design brief

Next series of experiments are more concerned to develop an environment which,
coupled with the structural feasibility, can lead to the formation of outcomes that
can be framed in an architectural scenario. Along with structural stability and fit-
ness proportionate to geometric measurements, I introduce here two procedures:

• local accessibility analysis, is a simple method to assess the topology of the
neighbourhood of each building block during the development of the individual.
The type of information are related the degree of “accessibility” that each block
has through its immediate neighbours. A block that shares a face with one of its
neighbour, is certainly more accessible from it than it would be from another
neighbour sharing an edge of a vertex with it, fig 5. In this way accessibility as-
sumes here a local meaning, testing the local connection of each block with its
neighbours. The higher is the number of neighbours that share faces with a block,
the higher is its local score. The sharing of edges and vertex is still allowed deter-
mining a smaller value of local score for the block. The structure is traversed in or-
der for each block to check the type of connectivity that share with its neighbours.
A global fitness value comes out of this analysis which is an index of connected-
ness of the spatial configuration as a whole.

• the introduction of three interwoven systems : boundary , internal and envelope
blocks. InternalBlocks are the direct result of the mapping procedure from geno-
type to phenotype. BoundaryBlocks and EnvelopeBlocks depend partially from
the topology of the structure and partially from its context. The BoundaryBlocks
constitutes a group of blocks whereby constraining the structure which acts,
hence, as its foundations. The EnvelopeBlocks is an additional layer of blocks that
wraps around the internal ones, which is created locally by each block. Once again
the structure is traversed and each block checks for the number of neighbours
that surrounds it. The creation of the envelope can be triggered by making a con-
dition based on this number. In the case of the structure shown in the following
pictures, when the number of neighbours for each block is smaller than two, the
block will fill completely all the available positions of its neighbourhood. The addi-
tion of the envelope alters to a great extent the morphogenesis of the structure,
being the envelope blocks considered as structural elements.
The internal blocks becomes indeed network of paths through which every unit of
the boundary and the envelope can be accessed.

The spatial configurations shown in the following images are extracted from dif-
ferent experiments where the individuals are rewarded with fitness proportionate
to their height, or more precisely to the Z position of each block in the structure,
and to the degree of local accessibility for each block. These come alongside the
constraint of structural stability and the user judgement.

axiom —> F[^^|FF|F+&FF|+FF^F|^FF-F]

n. interations —> 4
sequence length —> 795

production rule 0 | context free |
operand —> F | sequence —>++F-
^-[&F|+FF&FF|&F-FFF]&FF+F&[FF^|^FFF|F&|F--
^^|F&FFFF|F+F^++]&^

genome sequence —> ++F-^-
[& F | + F F & F F | & F - F F F] & F F + F & [F F ^ | ^ F F F | F & | F -
- ^ ^ | F & F F F F | F + F ^ + +] & ^ [^ ^ | + + F - ^ -
[& F | + F F & F F | & F - F F F] & F F + F & [F F ^ | ^ F F F | F & | F -
- ^ ^ | F & F F F F | F + F ^ + +] & ^ + + F - ^ - [& F | + -
F F & F F | & F - F F F] & F F + F & [F F ^ | ^ F F F | F & | F -
- ^ ^ | F & F F F F | F + F ^ + +] & ^ | + + F - ^ -
[& F | + F F & F F | & F - F F F] & F F + F & [F F ^ | ^ F F F | F & | F -
- ^ ^ | F & F F F F | F + F ^ + +] & ^ + & + + F - ^ -
[& F | + F F & F F | & F - F F F] & F F + F & [F F ^ | ^ F F F | F & | F -
- ^ ^ | F & F F F F | F + F ^ + +] & ^ + + F - ^ -
[& F | + F F & F F | & F - F F F] & F F + F & [F F ^ | ^ F F F | F & | F -
- ^ ^ | F & F F F F | F + F ^ + +] & ^ | + + + F - ^ -
[&F|+FF&FF|&F-FFF]&FF+F&[FF^|^FFF|F&|F- -
^ ^ | F & F F F F | F + F ^ + +] & ^ + + F - ^ - [& F | + F F & F F | & F -
F F F] & F F + F & [F F ^ | ^ F F F | F & | F - -
^^|F&FFFF|F+F^++]&^^++F-^-[&F|+FF&FF|&F-FFF]]

Fig 5 neighbourhood topology

face to face
edge to edge

corner to corner max score for
neighbours = 6

 34

Fig 7 translational and torsional component of induced forces

< TqStr/7

< TqStr/6

< TqStr/5

< TqStr/4

< TqStr/3

< TqStr/2

< AxStr/7

< AxStr/6

< AxStr/5

< AxStr/4
< AxStr/3
< AxStr/2

Weights and mechanical properties

The fitness function is implemented for a multi-objective evaluation and is also
supported by the eye-ball test (user judgement) which is required every time a
generation of new individuals is rendered. Usually, in order not to make the proc-
ess too slow, generations are rendered within a certain range that can be speci-
fied by the user or when there is a drastic improvements in the fitness values of
one or more of the individuals (fig 28 chapter 2). In this way the user can express
his/her judgment only on a small part of the solution space which comprises the
best performing individuals available at the time of the evaluation.
When having more than one design criteria, they need to be properly combined
in order to make a unique value that can be used to evaluate the individuals. This
can be done by identifying regions of the search space that are of particular inter-
est and using their boundaries to normalize each fitness value. For instance, for
the development of high rise structures, the height of the individuals needs to be
evaluated. This can be done by simply taking the span of the structure along the Z
axis or by giving a score to each block which is proportionate to its Z position. Both
these two values can be scaled for the maximum height. This value can be derived
by assuming that all the symbols in the L-System genotype tells the block to pile
on top of each other, as many time as the length of the string is. For instance, if the
maximum length of the string is 400 and the edge of each cubical measures 1 unit,
the structures can not be taller than 400 units. Dividing the value of the height of
each individual by this figure, returns a non dimensional fitness value expressed
in terms of percentage which is ideal to be combined with other values. The result
that comes out of the local accessibility analysis (which is already without dimen-
sions) and the score for height can be combined by multiplying each for a factor
and by summing the obtained figures. The factor is usually called “weight” and it
is introduced to bias the searching towards desired region of the solution domain.
For instance, very tall and slender structures present a low value of integration,
while less tall and blocky ones , fig 7, have a low height value. By tuning the fitness
function with the weights, it is possible to reach intermediate position between
these two extremes.
In order to favour the emergence of high rise structures, not only the weight rela-
tive to the height but also the value of the axial strength of the joints need to
be increased. Being the structural evaluation the first design constraint to satisfy,
the individuals can increase their height only within the limit of the mechanical
properties of the blocks. In addition to this, the emergence of different structural
topologies can be encouraged by altering these values. For instance, a low val-
ue of the torsional strength of the joint does not allow the structure to develop
pronounced appendices, while a very high value usually lead to “hairy” configu-
rations. To make the fitness function dynamic and explore the search space in
multiple directions, the values for the weights and the ones for the mechanical
properties can be changed over the course of the evolution. In this way the user
is not only able to judge the generated solutions on the base of aesthetic criteria
but also to radically change the region to explore . Fig 8 translational and torsional component of induced forces

 35

axiom —> F

n. interations —> 4

sequence length —> 1590

production rule 0 | context free | operand —> F | sequence —> F-FF+&-+++[F^F^F
^F^F^F^F^F^F^F^F^F^F^F[F&|F^&|+^F[FF^H|&+|F-HF|-FF|&FFFF|F-+F&|FGH-+|HFF&F|F^F^]-FHF[FF^|GGHF|+F-F|^-H+F]-
&|F&H[+HFFFG|F&+F+&|F+HF|F+F&|&F-G&&|+^FFHG|+F+HH|G-+]F^&[+-&HF]F^&|F^&|F^&[-H|H-|FF|FF|G&FG-|FH&+|FFF]
F^&|F^&|F^F^F^F^F^F^F^&|F^&]G-^[-G|FFF|GF|FFF--]++F|G+FF[&F]FF|FFFFFFFF+FFFFFFFFF+GFF|FG|&+|-FFG[F^+|-FH|FF&F|-
F-|F^+|GF-H+|+F+|H-+G-H]H+FFFG-|HF|F&F|FFFHF|F+FFH|-FG^+^|FFF^G|FFF^G|FFF^G]FH&-|-HFF+G|-FF[+&|F^FFF|FF-
|GFHF+&[F&+|-F&H&F|FF&FGH|F^FF|FFHH+|F&|FFF&G|&G]-F|-F-[HG|+FH+|^F-F&|-F|H&F+|---^]+H&FF[FHF|FFH|-
F|F^GF|+FGHF|F+FFH|HF|&F|F++|H+|+FGHF|+FGHF|+FGHF]FHF[^+|HF|FF&F^|FH-|FFGF|FG+^F-|^^^^|-F]-FFFFFFFFFFFFFFF+]
HG[-F|GFFG|FH+|F++[&^HH|^FF&|F^]G&F|F|F+[FF^H&F|^+F&FF|G&&|&G-&G]FH+|FH+[^-FFH|FF|FFF|H^|H&|FF-H|F-
&FFH|+F-GFF]FH+[GFF^FF|FHF|^&^FG&|F^]FH+|FHH-^[&+FH+|GHG-|FF^|HH&|GHG-|GHG-|GHG-|GHG-|GHG-|GHG-|GHG-
|GHG-]&&&&&&&&&&&&&&&&&&-|F+|&G&HF|FFF[&FF]F-[FHH|-GGF|+FF-F&|F-GF|FFFF|-G-]GFFG|GFFG|GFFG[FF]
GFFG|GFFG|GGFG|GF-G]G^G[^&+|&&F[HF|FFF&+F|GG+H|FHFFHF|&H|FFFF&|-+GG^F]HHFF-F|GFFFH|FH---&|FFG|FG-FHF|+-
&F|^-G-F|FF&F|HF|-H|+&FF^F]FF-++H[&F+F+F]-F[FF&FF&|FF[FF&GHF]-&[HF-FF+|FF|F^F-FF|F^|FFF+^G|F^F-FF|F^F-FF|F^F-FF|F^F-
FF|F^F-FF|F^F-FF|F^F-FF|F^F-FF|F^F-FF|F^F-FF]HF|FH[G-|+&FF+|+F+GFF|^GFF&F|G^|FFH^F|GFFH|FFFGHF|&+FFF^]F-F|FFFFF[
GG|&FHF^&|FF+HG+|H&F|&FHF^&]G-[^F&F]F++[FF^G^|FGF^|FF^^|^H^GG|FFF^]-F-&+]F-FF[^FH+FF|^FF^F|-^+&+-|^H+|HFFG-
-|FFF|^+|^+|^+|^+|^+|^+|^+|^+|^+|^+]FFF|F^[F&++F&]FF+G|FGHF|&&F-F-[+F|FHFF-|F-HFF|HFF-&|^FG-|FGH&F|FF&|GFF&|-
^FFF&|-^FFF&|-^FFF&|-^FFF&|-^FFF&|-^FFF&|-^FFF&]&G&FF[HF^FF|+FF|F&F&&]-G|^--FF|FF^|FFFFFFFFFFFFF|FFH^FF

production rule 1 | context free | operand —> F | sequence —>
-++-&+F^FG[^F+F&|FFF[FHF-+F|FG^|FF&G|FFFFFF|FG|FF|FF^F|FF^HF|FG^|FG^|FG^]FFF[+HHHHHHHHHHHHHHF|F^^&-
|^FF|&&[+F^|^FH|FF|&F+F|F&+]&&|+&F[--FFF]HF^FF&[F&F|FF^GF|FFFFFH|FG&&|FFF]FFF&FF|+FHGF|F-|GG+|-H[FH-
|F+^F|GG+++&|FFF-FF]FF^F[&F^+|G^F-&|&FG|-&+^|+HF-|GFFF^G|-+&^|&^-H|F+|GF-F&F]FF^|FG[GG|G+]+FG|GFFFF^[^FHF&]
FF++F|-G+FH|FGFFF|HF^GG&|-F|&^|GFHF+|GFG|F&GF^F|-F|-F|-F|-F|-F|-F|-F]FFG&[FFFFF^|FFFGHG|&FHF&F]+F[
HHGF|&FF[FGG]F^|GF^[++FH|F+FFF|GHH|F-FGF+|^-F^F|^-F^F|^-F^F|^-F^F]F&F----------------&+[HF&HF|F&F^&F|GF-
F|GH&GFF|FF+|GG^GF+|FF^G|F-F]^F&F[F&FF|-F|FHF-^|&HHF&G|-GHFG^|-F|&FF|^HF&|F+GF&&]FF|F&F-&+[--
|FGFF^|&F|F&F+|+&FFF^|HGF|^-FHF|+F&F^&|G&HF|FG+|^-FHF|^-FHF|^-FHF|^-FHF|^-FHF|^-FHF|^-FHF|^-FHF]HGF--|GFF-
&F|FHHHHHHHHHF[FFF&F]HFFG&|FFFF|+&F|HFF++F|GFHFH[FFGF|&-^F|FF-F-F|F^GF|-+|-F|FFF^F|F-F|-H]F+|HFH+^|FF|FF|F++FF|
HH&G|F&HH|FH&&|HH-FF|-&&|^F&^F|-G+-]FF+[G&|FFHF|++|&^|+-FFHF|GGFGFF|^+F&|+F+GFF|^FF|GGFGFF|GGFGFF|GGFGFF|G
GFGFF|GGFGFF|GGFGFF|GGFGFF|GGFGFF]+^F[FFF|FF^&HF|FF^&HF|FF^&HF|FF^&HF|FF^&HF|FF^&HF|FF^&HF|FF^&HF|FF^&HF|F
F^&HF|FF^&HF]-G|F^&&&&&&&F|-&^F[F&FGF^|F+F^|+&&-|FF^F]GF&G[G
GFGF|+^+FG|&GF|FFFFG^]^F|G^GF-+|FF|^^-F&[+F|^HF]FGFFF|FFFF+|^FG|-FF^GF|FF|+F^^-|-F]

production rule 2 | context sensitive | operand —> F | left con-
text —> “G” | right context —> null | sequence —> F-^F+&-+-G[^F+G-[&F^|G-^FG]&FH[-
^GF[FGGF^-|FFG|+&F^|^GFHF+|GGF+GG|HF|FF|H-^^|F^|HFF]&FF[F-F|^F&F+H|HHFF]FF+FF[&F]F+--|HF[&FFF^-]-
G^G|H+G[HFFFG|GFFFF|-&F|FF]^+FFFF|+&FF+&FF+&FF+&FF+&FF+&FF+&FF+&FF+&FF+&FF+&FF+&FF+&FF+&FF+&FF+
&FF+&FF+&FF+&FF&[-FFF-|-FF^^|F&|HFF|FF|HH^&|+FF^|FFGF+&]+-|FFHF[&H^G|&FH-&-|F+F|FH|GG&+|HFF|-G-|F+
|F+F^|F^&G|F^&G|F^&G|F^&G|F^&G|F^&G|F^&G|F^&G]FFF|-FHF|FF^--F|&G]FFF|FFFFFFFFFFFFFFFFFFFFFFFFG&[-
F^^[F-FFFF|^GGF|HGFG^F|^F|GGFFF]F^FF+[&F+F^|F+&FF&|-F|-&F|FH&|FHFFF|FF^F|FHFFF|FHFFF|FHFFF|FHFFF|FHF
FF|FHFFF|FHFFF|FHFFF|FHFFF|FHFFF]FH|H^H^+-[F^F^|F--|+FFFF|^F|-&FH|^FFFF|FF+HF^|-+|GG|HF]+H[FF+|+G|++|-
^F|^GF|+H|FF-FG]-&F[FF^F+ +]FF^|FF[-FH|H--+&F|FHFFHG|GHHH-F|FH+&|FH|FGFH+ +|FG^|FH+F^^|GHGFG]
FF]+F[FHF&H-|+F-+&|G-F&[G+|^F&-F+|FG+^FH|H&F-|F^&F|F+F|GFFFFF|HFFF^]-F|-^FG[-H|FG|-FF|FGG|+F|-&-F|&-]
F^|FFGFF|FFFFF[-F-FF^|-HFFH|FF|H-H|H-H]-^FG[^FH&F|&F|FFG-^|F&|F+HFH|FF^|F^|F^|F^|F^|F^|F^|F^|F^]-^FG|^-FG|^F-
|F&&|+H&F|F+FH^|F^-F+|+-FG^|G&&-|+-FG^|+-FG^|+-FG^]FF+|+^F|-G|+F^|F&[F&-FF|FF-F|F-^H|F+FF|&H|FFF|F^+&]&FFFFFFFF
FFFFF^[FF+|HH&H|-+^|^F+]+FF&^[&GH|F-HFF|FFF|&+|^&GH|-F^FHF|F^FG&F|FF^]FF&FGH]-[+FF+F[^^F^F+|^&F&F|FG+FFF|FF&|-
F|F--FGH|FGF^|+H]FF[&G&F-]FF[FFFF|F+FHFF|-HH|FFFF|FF-|FFG|HFFH|&FG]&-FHFHFHFH-[-&^F+F|^F-&FH|G-F|HHG|G+G|FF|GG]
FF|-+-F+|&F|&-F|FGFFFF|FGFFFF|FGFFFF]&-GGF-GGF-FF|[&-&FF^--&F^|^FF+&&|&FFF&|&+|FF+|+FF^[HH&|^FF|F-+F|FFG-
^|+F|-FFHFH|FFGF-|F-GF&|-+FHH|+--FF|FFGF-|FFGF-|FFGF-|FFGF-|FFGF-]FF-&[FF|FH|&F|F&F^&|G+H+&|^F+F]FFF[GF|-
^^FFG|-&G+FG|-^^FFG|-^^FFG|-^^FFG|-^^FFG|-^^FFG|-^^FFG|-^^FFG]&F-]^^^|FG++[+F+[F^FHF|-F|^-H|F+&HHG|&GH|FF
F&H|^F&FF|GF^G&G|^GF]^-^&|-HF|FF+&G[-H|FF&H|&F+F|F++^FF|^FGFG+|GFG&|F+FG-F|^HFFF-|F&|G+]FFF|F^[GHFF|F-
|FG&|GHFFHF|FFG|F^&FF^|F-|F-|F-|F-|F-|F-|F-]--FF[&F-H|FFFGFF|F^&F^|FF&^|H++FF|FFF|&FF-FF|+F+^^^|-F|FF--^F]F&F|FF&|-
FF--|H&|+-&^|HFGG+|-&F[F+]^&FG]GFF&FF[GG&FF|-FFF|&H^|G^&FHF|^F^^+|H&^|FGH|FGH|FGH|FGH|FGH|FGH|FGH|FGH]
FG++[F^|^-F-|GGFF|^F&+G|F^&FF|^HFFF|+F|HG^&|F+F|&+^]FG++|FG++[^^FG|FF^F^+|HFH^|FFF^|HFF|F+|^GGF|GFG|^^|GFG|G
FG|GFG|GFG|GFG|GFG|GFG]FG&F[FF]FGGGGGGGGGGGGGG+&GGF+[GFHFGF|^^-FF+|H^F^F|G+^^FF[FFF+|FHH|+&-|+&-|+&-|+&-
]--F[G+&F-G|G&&&H|+F-H+^|G-GF-F]FGGH|-F&H[FF^&|FF&]^FG&F^|&-[F-FFF^|HG|GFFF+|+HFFF|+GF|FGHF^|FFHH|+^+&F-|+HF
FF|+HFFF|+HFFF]&GF&GF&GF&GF&GF&GF&GF&GF&GF&GF&GF&GF&GFF[FHGFH+|^FF|F+|FFF|F-]FH&F[GF|GF|FF+F&|FH&|G^F
F|FF|G&^&F|FF]+FG|FG[HFF&F+|FF&F|FF|FFF|^F|^+|&G&&G|G-H|F&HFF+|&^FF]FFH|F&|FF+-]FG+[FHFH[FGF-F|&F|-H|-H|-H|-
H|-H|-H|-H|-H|-H|-H|-H]HF[^+HH-|+-F|+FHFF|HF+&G|FFGF|H^+F|H-FG&G|&&+^]+F-G[FF|FF|-&G&H|FGG-+^|H^F|GFGFF&|-
FG-|^FF]^-[H-F^|FF|G^GFF|^+G^|&F-|^H^H|F^-F|G^GFF|G^GFF|G^GFF|G^GFF|G^GFF|G^GFF|G^GFF|G^GFF|G^GFF]^^[FF++FF]
HF|HF|+GH|++^F|^G^GH+|F^F+F-|F&FF|F^F+F-|F^F+F-|F^F+F-|F^F+F-]+GF+[&F^F&|FFH-+[F+F^F|^-&^HF|F++FF|^F|FFFHFH|^&^^-
G|&+^FF|F-+H+^|FFFG+|-GF^]+FF]FG++[&&G+|FF^|G+FHF&|FH|^&+FF|FF|+FF|G^&F]FG++[FH^F|-F^FFG|G^&G|FF|HG^|FF-
|FFGFF-]FG++|&HHG+-|+F|-+FF|FFH&F&|-&&|HF|FF|F^[HF+-G|^FHF|F+F|GGF&|F&^|&G-|FG&^+F|-^&FFF|FG|F-H]FHF

Fig 9 design criteria : stable high structure | connectivity analy-

 36

Fig 10 translational and torsional component of induced forces

Fig 12 forces at bifurcationFig 11 design criteria : stable high structure | connectivity analy-

< TqStr/7

< TqStr/6

< TqStr/5

< TqStr/4

< TqStr/3

< TqStr/2

< AxStr/7

< AxStr/6

< AxStr/5

< AxStr/4
< AxStr/3
< AxStr/2

 37

axiom —> F

production rule 0 | context free | operand —> F | sequence —> F&[^+[FFFFFF|&F&-
|F--&^F|+F]F&F[^++F|&++|&F&&|FF^|F-
FF+^|-F|F^F^+F|FF|-FF]^^-]

genome sequence —> +-F&[^+[FFFFFF|&F&-|F--&^F|+F]F&F&F&F&F&F&F&F&F&F&F&F&F&F
&F&F&F&F&F&F&F&F[^++F|&++|&F&&|FF^|F-FF+^|-F|F^F^+F|FF|-FF]^^-]F&[^+[FFFFFF|&F&-|F--
&^F|+F]F&F[^++F|&++|&F&&|FF^|F-FF+^|-
F|F^F^+F|FF|-FF]^^-]&&[&F&[^+[FFFFFF|&F&-|F--&^F|+F]F&F&F&F&F&F&F&F&F&F&F&F&F&F&
F&F&F&F&F&F&F&F[^++F|&++|&F&&|FF^|F-FF+^|-F|F^F^+F|FF|-FF]^^-]F&[^+[FFFFFF|&F&-|F--
&^F|+F]F&F[^++F|&++|&F&&|FF^|F-FF+^|-
F|F^F^+F|FF|-FF]^^-]^|F&[^+[FFFFFF|&F&-|F--&^F|+F]F&F&F&F&F&F&F&F&F&F&F&F&F&F&F-
&F&F&F&F&F&F&F[^++F|&++|&F&&|FF^|F-FF+^|-F|F^F^+F|FF|-FF]^^-]+F&[^+[FFFFFF|&F&-|F--&^F|+F]
F&F[̂ ++F|&++|&F&&|FF̂ |F-FF+̂ |-F|F̂ F̂ +F|FF|-FF]̂ -̂]+F&[̂ +[FFFFFF|&F&-|F--
&^F|+F]F&F[^++F|&++|&F&&|FF^|F-FF+^|-
F|F^F^+F|FF|-FF]^^-]|F&[^+[FFFFFF|&F&-|F--&^F|+F]F&F&F&F&F&F&F&F&F&F&F&F&F&F&F-
&F&F&F&F&F&F&F[^++F|&++|&F&&|FF^|F-FF+^|-F|F^F^+F|FF|-FF]^^-]^|&F&[^+[FFFFFF|&F&-|F--&^F|+F]
F&F[^++F|&++|&F&&|FF^|F-FF+^|-F|F^F^+F|FF|-
FF]^^-]^F&[^+[FFFFFF|&F&-|F--&^F|+F]F&F[
^++F|&++|&F&&|FF^|F-FF+^|-F|F^F^+F|FF|-FF]^^-]]

n. interations —> 3

sequence length —> 1197

Fig 14 design criteria : stable high structure | connectivity analy-Fig 13 close up | joint between the two helicoidal arms

 38

Fig 15 translational and torsional component of induced forces

Fig 17 induced forces close upFig 16 design criteria : stable tall structure | connectivity analysis

< TqStr/7

< TqStr/6

< TqStr/5

< TqStr/4

< TqStr/3

< TqStr/2

< AxStr/7

< AxStr/6

< AxStr/5

< AxStr/4
< AxStr/3
< AxStr/2

 39

Fig 19 design criteria : stable high structure | connectivity Fig 18 design criteria : stable high structure | connectivity

Fig 21 map of translational and torsional component of induced forces Fig 20 map of translational and torsional component of induced forces

 40

Structural Coevolution

The genotypic representation that has been used so far implies the use of a one
to one mapping procedure between the search space and the solution space. One
genome is formed, interpreted and mapped to make the phenotype.
An alternative approach is to consider the genotype being made by multiple parts,
which are eventually mapped onto one unique phenotype. Different parts of the
individual have their own genotypic representation but, during their growing
process, interact to form one individual.
Two or more systems are co-evolved in a process where each system constitutes
the “biotic” environment for the other parts. Each representation is ,hence, under
the pressure of both the biotic (the other systems) and the abiotic environment.
The abiotic environment is made by the design criteria/constraints that have to
be observed by all the systems present in the individual. The biotic environment
is instead pertinent to each part in the system and can be considered as the func-
tion that each part performs respect to the others. The experiment of “enclosure”
and “space” carried out by Coates (Coates et al. 1999) and Jackson (Jackson 2002)
show a possible applications of such a coevolutionary approach.
The experiments conducted in this work explore the structural coevolution of mul-
tiple parts within the same spatial configuration. Two genotypic representations
are mapped in two different regions of the 3D cartesian space and let interact. The
interaction mainly consists in their cooperation in order to achieve pattern forma-
tion along the z axis, structural stability and the accessibility of their constituent
elements. The structures start developing separately but, during their growth,
can happen to share commons spaces which are merged to create a unique in-
dividual. Fig 22 shows the two distinct parts of the spatial configuration featured
in fig 25. These join in three different locations, in this way supporting each other
and reaching structural stability. The two structures would not be stable taken
separately .
The configuration shown in fig 26 is composed by a structure that constitutes its
main body, which is not stable taken singularly (fig 25), and a second part that
acts as a base in which the first is interlocked. This gives to the whole structure the
capacity to counteract the weight of its cantilevering appendices .
One of the biggest challenge that such a co-evolutionary approach presents, is
a highly pronounced difficulty for the individuals to reach better performances.
The multiple representation of the genotype might comport further discontinuity
in the search space in addition to what already caused by the use of an explicit
embryogeny.
The experiment related to this approach are at a very early phase. The procedure
should go major development to enrich the way the structures interact with each
other and to find new definitions of multiple representation.

Fig 23 torsional and translational component of induced forces

Fig 22 the two structures merge to make one stable configuration

< TqStr/7

< TqStr/6

< TqStr/5

< TqStr/4

< TqStr/3

< TqStr/2

< AxStr/7

< AxStr/6

< AxStr/5

< AxStr/4
< AxStr/3
< AxStr/2

 41

Fig 24 design criteria : stable high structure Coevolver | connectivity analysis

Structure 1

axiom —> F

production rule 0 | context free | operand —> F | sequence —> ^-+F[+$+£F|£££--
F|$F|FFFF|+F&FF$]

genome sequence —> ^-+^-+F[+$+£F|£££--F|$F|FFFF|+F&FF$][+$+£^-+F[+$+£F|£££--
F|$F|FFFF|+F&FF$]|£££--^-+F[+$+£F|£££--F|$F|FFFF|+F&FF$]|$^-+F[+$+£F|£££--F|$F|FFFF|+F&FF$]|^-
+F[+$+£F|£££--F|$F|FFFF|+F&FF$]^-+F[+$+£F|£££--F|$F|FFFF|+F&FF$]^-+F[+$+£F|£££--F|$F|FFFF|+F&FF$]^-
+F[+$+£F|£££- -F|$F|FFFF|+F&FF$]|+^-+F[+$+£F|£££- -F|$F|FFFF|+F&FF$]&^-+F[+$+£F|£££ -
--F|$F|FFFF|+F&FF$]^-+F[+$+£F|£££--F|$F|FFFF|+F&FF$]$]

n. interations —> 2

sequence length —> 386

Structure 2

axiom —> FF-F-|F+F|$F-F|FF[FFF+|F-|£FF|F&F$+£]

production rule 0 | context free | operand —> F | sequence —> ++F-£|£^+F£F[+^F|FF^&
&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-
£F[-$F-£|+£F|+F^-]

genome sequence —> ++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-
[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]++F-
£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-
|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]-++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]
F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-
]-|++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]
FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]+++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F
$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-
£|+£F|+F^-]|$++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-
$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]-++F-£|£^+F£F[+^F|FF^&&|FFF|£F
^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-
£F[-$F-£|+£F|+F^-]|++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-
$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]++F-£|£^+F£F[+^F|FF^&&|FFF|£
F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-
£F[-$F-£|+£F|+F^-][++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-
$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$
+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-
£|+£F|+F^-]++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]
FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]+|++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|
FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-
]-|£++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]
FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]
F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-
]|++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-
|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]&++F-£|£^+F£F[+^F|FF^&&|FFF|£F^|$+&F$F|FF+-&]F|F-F£-
[&F£+F|F&F&FF|F£+F|&F-$-$|$^^F-&]FF$|F£F|F-|$&F[+F+|$-FFF&|FFF]F+&F|-£F[-$F-£|+£F|+F^-]$+£]

n. interations —> 2

sequence length —> 2367

 42

Fig 27 torsional and translatioanl components of induced Fig 26 design criteria : stable high structure Coevolver

Fig 25 structure 2 acts as a base for structure 1

< TqStr/7

< TqStr/6

< TqStr/5

< TqStr/4

< TqStr/3

< TqStr/2

< AxStr/7

< AxStr/6

< AxStr/5

< AxStr/4
< AxStr/3
< AxStr/2

 43

Conlcusions

The system tries to generate spatial configurations out of a process of searching,
based on the specification of design criteria/constraints, and evaluation of the
outcomes. To make this possible it needs the combined action of different sub-
systems. A generative rules system creates the initial definition of the problem,
trying to embrace the largest possible region of the solution domain. A searching
mechanism continuously restructures the representation of the search space to
generate new possible solutions. A mapping process translates the information
encoded in the genotypic representation into geometrical entities. The evaluation
of the outcomes drives the process towards specific sub-spaces of the solution
domain, in order to accommodate the requirement expressed in the encoding of
the design criteria.
The initial proposition, which this work moved from, was to create “geometry”
through “topology”, to generate formal expressions of design criteria by only
specifying the relations between the components of the artefact being designed.
The discussed system tries to respect this proposition by evolving the structure
in which these relations are framed. This does not have to be intended as the
designer knew nothing about what he designs, but rather as the design process
started with an ill-definition of what the final outcome is going to be. The creator
of the system, hence the designer, brings in all his /her background, being a cer-
tain number of assumptions to be made in order to build the system itself. In addi-
tion, the interaction between the designer and the system gives the possibility to
observe unforeseen solutions to the problem posed by conflicting design criteria.
The “affordancy” (Gibson 1977 cited in Laughlin 2008) of the system mainly relies,
hence, in this interaction, when it reveals to us solutions that we would have never
considered but that are nonetheless still feasible according to the evaluation crite-
ria. Affordancy is a term coined by the psychologist James J. Gibson to explain the
interaction between experience and reality (Laughlin 2008). We, as human being
build models of what reality provides. The process of recognising things is based
on the properties of the thing and on the subject that recognises it, who is mainly
influenced by his cultural heredity (Laughlin 2008). When surfing a population of
configurations generated by the system, the user starts to recognise familiar pat-
terns which features symmetry, self similarity within their components and that
are close to his/her aesthetic criteria. On the other hand, the feedback coming
out of the evaluation of the performances of the proposed configurations, help
him/her to consider non-conventional formal expressions that perfectly fit within
the context framed by the design criteria. No doubt, hence, the design process
still owns its subjectivity, which mainly belongs to the social-cultural background
of the designer.
Having said that, it is worth pointing out that the mutual feedback between the
designer and the system goes much deeper than the judgement of temporary
solutions that need to be evaluated. By interacting with the system, the designer
becomes able to understand the behaviour of the system as a whole which gives
him the capacity to make structural changes to its framework. This makes a multi-

level feedback loop where the designer not only is part of the process (evaluat-
ing what the system produces) but eventually becomes the environment for the
system (the designer making or altering the structure of the system). The system
is, hence, organised in hierarchical layers of subsystems where one can be subor-
dinate to another in some aspect, but superordinate to it for other aspects, in a
“heterarchical” structure (Heylegen 1989).
Whether the outcomes shown in previous pages could reach the realm of design
briefs, it will definitely require further implementation of the system and further
elaboration of the simulated environment. The system should undergo major de-
velopments in order to be able to contextualize the environment in which the
evolved configurations are placed.
Possible ways to achieve this and future way of development could be :

• The implementation of an implicit embryogeny (Bentley 1999) would make the
mapping process adaptive during the development of the phenotype. Parallel
processing, conditional iteration, subroutines would be, in so doing, inherently
incorporated in the mapping without the need to design them by hand. A direct
feedback between solution space and search space, phenotype and genotype
would be , hence, created.

• The symbiotic approach whereby interwoven systems co-evolve together to-
wards common better performances, has been explored only from one perspec-
tive, the structural stability of a unique configuration from the development of
two separate structures. This implies the possibility to extend the process to other
design criteria such as the one already experimented by Coates of “enclosure” and
“space” (Coates et al. 1999).

• additional force fields should be added to consider the presence of physical
agents, such as sunlight irradiation or wind exposure, as well as agents related to
urban context such as the surrounding landscape

• the introduction of a context sensitive environment in which the morphogen-
esis of the solutions can be influenced by the presence of other entities. This will
broaden the range of applications of the process which could be used to evolve
design that adapt to different type of surroundings.

• the introduction of a procedure based on agents based modelling systems to
test the efficiency of the layout of the generated configurations (Coates et al.
1999) would be a valuable evaluation criteria for the system to feature

Further developing the system will eventually lead to the making of a design
methodology whereby forms, following forces, become expression of high level
of abstractions such as design criteria and the plastic sensibility of the designer,
potentially resulting in the formulation of design briefs.

 44

References

Bard, J. (1990). Morphogenesis: The cellular and molecular processes of developmental anatomy. Cambridge University Press, UK.
Bentley P. & Corne D., 2002, Creative Evolutionary System. Morgan Kaufmann Publishers, San Francisco.
Bentley, P. (1999), Evolutionary Design by Computers. Morgan Kaufmann Publishers, San Francisco.
Coates,P.; Broughton,T.; Jackson H. (1999), Exploring Three Dimensional Design Worlds using Lindenmayer System and Genetic Programming. In Evolutionary Design by Computers,Bentley P.
(1999). Morgan Kaufmann Publishers, San Francisco, p. 323-341.
Coates, P. (2010) Programming Architecture. London.
DeLanda, M. (2002), Deleuze and the use of the Genetic Algorithm in Architecture, Designing for a Digital World. Wiley-Academy, p.117-120.
Dollens, D. (2005), Digital-Botanic Architecture. Lumen, Santa FE.
Frazer, J. (1995), An Evolutionary Architecture. AA Publications. London
Galasyn, J.(2008)(unplublished). Load propagation in a discrete two-dimensional medium, http://www.leftopia.com/zs_arcology_studies.htm
Goldberg D., (1989), Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley.
Heylighen F. (1989): “Self-Organization, Emergence and the Architecture of Complexity”, In Proceedings of the 1st European Conference on System Science, (AFCET, Paris), p.23-32.
Hillier, B.(1996), Space is the machine : A Configurational Theory of Architecture. Cambridge University Press
Holland, J. (1992), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to biology, Control, and Artificial Intelligence. MIT Press, London, p.1-19
Ingeborg, M. 2004, Calculus - Based Form: An Interview with Greg Lynn. In AD Programming Cultures: Art and Architecture in the Age of Software,76(4), p.89-95
Jackson, H. (2002), Towards a Symbiotic Coevolutionary approach to Architecture, In Creative Evolutionary Systems, eds. Bentley, P.; Corne, D. (2002). Morgan Kaufmann Publishers, San Francisco,
p. 299 - 312.
Johansen, J. (2003), Organic process. In The organic approach to architecture, eds. D. Gans & Z. Kuz. Wiley-Academy, p. 95-104.
Kolarevic, B. (2003), Architecture in the Digital Age. Spoon Press
Koza, J.(1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection.The MIT Press, Boston.
Krämer, J.;Kunze, J.(2005). Design Code. Professor Finn Geipel Labor für integrative Architectur Techniscule Universität Berlin unpublished thesis,TU Berlin.
Kumar, S.; Bentley P. Implicit Evolvability: An Investigation into the Evolvability of an Embryogeny, http://www.cs.ucl.ac.uk/staff/p.bentley/KUBEC2.pdf [Accessed 22 Sep 2009]
Kumar, S.; Bentley, P. The ABCs of Evolutionary Design:Investigating the Evolvability of Embryogenies for Morphogenesis,
http://www.cs.ucl.ac.uk/staff/P.Bentley/KUBEC1.pdf[Accessed 18 Sep. 2009].
Lynn, G. (1998), Variations on the Rowe Complex, from Folds, Bodeis and Blobs. Collected Essays, Books-by Architects Series, Bibliotheque de Belgique.
Poli, R.;Langdon, B.(1997).Genetic Programming with One-point Crossover and Point Mutation. In Genetic Programming 1997: Proceedings of the Second Annual conference on Genetic Program-
ming, eds. Koza, J.;Goldberg, D.; Fogel, D.; Riolo, R.Morgan Kaufmann,San Grancisco, CA, p.278-285.
Prusinkiewicz, P.; Lindenmayer A.(1990), The Algorithmic Beauty of Plants. Spinger - Verlag, New York
Steadman, P. (2008), The Evolution of Design. Routledge, London, p.238 - 270
Stiny, G.; Mitchell, W.; The Palladian Grammar. In Environment and Planning B, volume 5, p.5-18
Thompson, John L. (1994), The coevolutionary process.University of Chicago Press
Turing, A.M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc., Series B, no.641, vol.237..

